Unikernels and Wearable Devices —
WinWinWin*!

13th Annual IEEE/ACM IT Professional Conference at TCF (2018)
Brad Whitehead, Chief Scientist — Formularity

March 16, 2018

Good afternoon. I’'m Brad Whitehead. I’'m the Chief Scientist at Formularity. Before
| get started, I'd like to thank the folks of the IEEE and the ACMfor giving me the
opportunity to talk to you today at ITPC 2018. In particular, I'd like to thank David
Sol and Al Katz. They have selected an excellent agenda of both interesting and
educational presentations. But most importantly, I'd like to thank you for choosing
to attend this talk. | hope | make it worth your while! Formularity is a small
company and you may not be familiar with us. We develop high security electronic
enrollment forms for things like national identity management programs, financial
institutions, and national health care program enrollments. We are dedicated to
making sure the sensitive personal information you provide on our forms is secure
and protected at all times. In addition to our forms being run by our clients in their
own data centers, we also offer a hosted solution. Since we are potentially storing
valuable, sensitive personal information of our clients’ customers, we are extremely
concerned about security! We take a number of steps to ensure information
remains encrypted; while at rest, while in motion, and especially inbetween ;-) We
are constantly reviewing not only the threats, but new technologies that can help
mitigate these threats. I’'m here today to discuss one of these promising new
technologies, unikernels. Unlike typical security measures that impose additional

complexity and require additional resources, unikernels are unique in that they
significantly simplify the software and operations, and they reduce resource
requirements. Hence the title of today’s talk — “Win, Win, Win”! To be clear,

Formularity is not yet using unikernels in production, but we are experimenting with
them and anticipate their use in the future.

fWic Whois Brad Whitehead ?!?!

2

* Former Partner and Master Technology Architect with Accenture r L

* National Scale Biometric Identification and Border Management Systems
e USVISIT m
* DHS Transportation Worker’s Identification Card (TWIC) -
* TSAPreCheck L AADHAAR

* Republic of India’s Aadhaar Program

* Presently Co-Founder and Chief Scientist of Formularity
* Secure Electronic Enrollment Forms for the Government, Healthcare, Finance, and Legal Industries
* We Offer a Hosted Solution, in Addition to Our Primary, On-Premise Products
* We Take the Security of Our Client’s Information VERY Seriously
* We Constantiy investigate and Expiore New Advances in information Security and Assurance

TSA Preyf US-VISIT

Keeping America's Doors Open and Our Nation Secure

What’s An Operating System Good For?

=
N\,
* |t ensures that these resources are scheduled and z_
shared according to a defined (and maybe even

fair) policy.

* It provides a uniform, standardized way to access
resources such as the CPU, 1/0, memory, and
storage, through system calls

* |t controls which applications have access to which
resources

What’s an Operating System Good For?
Uniform, standardized access to resources (CPU, I/O, memory, storage, etc.)
Safe sharing of these resources (traffic cop)
Security

Anatomy of An Operating System

- " ”n
Anatomy of a Linux System The Kernel
* Runs in Special Hardware Mode - “Ring 0”
- user, * Only Program That Can Access or Allocate

Resources
“ * CopiesData Between Programs

“UserLand”

* Where Applications Run
No Privileges
Can Not Access Resources

Can Not “Talk” to Other Programs

; O REILLY"

Anatomy of an Operating System
User Interface (CLI or GUI)
Standard set of tools and applications (“Userland”)
Kernel (privileged, separated from Userland by hardware)
Monolithic (Linux even includes a web server in the kernel!)
Famous flame war between Torvald Linus and Dr. Andrew
Tanenbaum, 1992 Usenet
Microkernel (Mach, Minix)
Context switches
data copying
Unikernels — Why we are here today!

What Kind of Kernel Are You?

¢ A Monolithic Kernel?

* Also Known as the “Kitchen Sink” Approach

(Linux even includes a web server in the kernel!) s
* Famous flame war between Linus Torvald and Dr. Andrew Tanenbaum,

* All Major Commercial OSs Have Monolithic Kernels

Multiserver Microkernel
The facts, M = or a Microkernel (Mach, Minix)?
"The facts, Ma'am. . : :
Just the facts.” Only Essential Functions in the Kernel

=mm " Better Flexibility and Security
’% = Poorer Performance with Context Switching
w

and Data Copying

or a Unikernel? — Why We Are Here Today!

It’s Good to Be Old!

Specialized Operating Systems

* 0S/360

* MS-DOS

* Apple Il DOS

* Univac EXEC-8
* CPM-80

General Purpose Operating Systems
* Unix
* Linux

* OSX (or whatever they are calling it today)
* Windows

It’s Good to Be Old!

Specialized OSs
MVS/360
MS-DOS
Apple Il BASIC
CPM-80

Standardized OSs — Huge Multiuser Monoliths
Unix(es)
Linux (22 million SLOC and 17 different languages)

RHEL - Userland of 420 million SLOC

Windows (50 million SLOC)

Processes and Threads
Faster instantiation
Shared memory/ no kernel transitions

HUGE General Purpose Operating Systems!

* Linux
* Kernel — 22 Million SLOC
* Written in 17 Different Programming Languages
* Red Hat Enterprise Linux UserLand — 420 Million SLOC
* Windows
* 50 Million SLOC
These OSs:
* Take Seconds or Minutes to Boot!
* Require Hundreds of Megabytes of Memory!

L [PO 1

* Consume Watts of Power!

And Thinking About the Number of Undiscovered Errors Makes
My Head Hurt!

Processes and Threads, Oh Dear!!
(or “Mr. Gorbachev, Tear Down This Wall”)

* Operating System Processes Isolate Memory and Communications
between Programs
* However, Processes are heavy and take time to initiate

* And there are significant performance penalties when information has to be
transferred between applications because the kernel must be involved

* Threads Remove this Isolation
* Faster to initiate W
* Every Thread in a Program has access to all the information in the Program .

“Threads”

g= B

SBrandenburg Gate Jung 121987

In Effect, Developers
Have Voted
SRR That They Want Less Protection Than Operating Systems Initially Provided

So What Do We Have Today?

Application Config
Application
Language Runtime
Shared Libraries
Docker Runtime
0S User Processes
0OS Kernel

Redundancy in the stack
- e.g. Isolation Virtual HW Drivers

Hypervisor
Hardware Drivers
Hardware

neo s
M fino
tOr»va

State-of-the-Art
Shared Servers (Hardware)
Hypervisor (running an OS)
Virtual Machines (each running an OS)
Containers (each with a User Land)
Single Application (and user)

Wearables and |OT - What Do We Need?

* Single User
* Single Set Of Hardware Drivers
 Small Memory Requirements (affects size, cost, and poweru.

* Less Complexity (lower speed processors, cost, power usage)
* Startup speed (who will wait a minute for a watch to boot un??)
* Limited Number of Communications Protocols/Stacks

- Reliability ” l

* Security (from unauthorized access) , E

Unikernels — Let’s Cut Out The Middle
IOT/Wearables
Dedicated hardware
Unikernel
Single Application

10

Microservices - What Do We Need?

* Single Application

* Single User

* Single Set of Hardware Drivers

* Single Communications Protocol/Stack
* Speed (startup and latency)

* Reliability

* Security (from unauthorized access)

* Repeatability (multiple identical servers)

Unikernels — Let’s Cut Out The Middle
Microservices
Shared Servers (Hardware)
Hypervisor (running an OS)
Virtual Machine (running a unikernel OS)
Single Application

11

What If We Cut Out All The Parts We Don’t Use?

* The Average Application Uses Less Than 0.08% of the Total Code in the Kernel

* There Are Device Drivers for Hardware That No Longer Exists

* Amazon AMI images have drivers for floppy disks and audio cards

* In 2015, the Venom vulnerability (CVE-2015-3456) used a flaw in the Floppy Disk
Controller (FDC) to allow virtual machines to be compromised

* Likewise, there are thousands of storage and communications protocols that will not be used
in your application

* Linux recognizes 7 different executable formats, even though the vast majority of
applications are in ELF format

* The C Library Has Thousands of Functions, But A Modern Linker Only inciudes the
Actual Functions An Application Uses

* Could We Do The Same With Our Operating System?

12

Obviously, The Answer Is Yes!

* If We Only Keep the Parts of the Operating System We Actually Use,
What Does It Buy Us?

* Let’s Start With Security:

* Greatly Reduced Attack Surface (99.92% reduction)
* Potentially a Small Enough Subset To Be Mathematically Verifiable

* We Don’t Need Any UserLand Applications (bye-bye 410 million lines of potentially
flawed SLOC!)

* No Ability To Run Malicious or Hacking Tools on Our Server, Wearable, or IOT Device

* We Can Statically Link Everything (including the Kernel functions) - Our Software
Becomes Immutable

* No Injection Attacks
* No Re-configuration Attacks
* Vastly Reduced “Return Oriented Programming” Vulnerability

Security
Reduced attack surface —.08% of typical
Small enough to possibly be mathematically verified
No tools (no shell, etc.)
No standard system calls — uses ASLR library calls
Immutable — modules and dynamic libraries can’t be added

13

Wearables - Power, Size, Reliability, Performance, Cost?

* Yes, Yes, Yes, and Yes!

* Less Code Complexity Means That Less Powerful (Pun
Intended) Processors Can Be Used — Extending Battery Life
or Reducing Battery Size and Cost

* Less Kernel Code Means Less Memory Requirement — Again
Reducing Power, Size, and Cost of Memory

* Less Code Equals Fewer Timing Errors and Undefined States .
* Less Code Means Faster Boot Up Times and Lower Latency

* Smaller Processor, Memory, and Battery All Mean a Lower
Cost

* Less Complicated Development, Increased Reliability and
Improved Security Means Reduced DevOps Costs!

Reduced Cost
IOT/Wearable
Less processing speed
Less memory
Less power/longer battery life

14

Microservices - Power, Size, Reliability, Performance, Cost?

* Again, Yes, Yes, Yes, and Yes!
* Smaller, Less Memory Intensive Images Mean More Virtual Machines Per
Hardware Server

* 5 Megabyte Virtual Machines = 10,000 VMs Per Hardware Server
* Smaller Than Most Docker Containers _ ok

* 6 Millisecond Boot Times
* Jitsu — Boot-On-Demand

* 45 Microsecond Throughput Times
* No Context Switches
* No Information Copying

e Cinala AdArace Cnara e
LITIFIT AUUITOO vpyaltc

* Less Complicated Development, Increased Reliability and Improved Security
Means Reduced DevOps Costs!

Reduced Cost
Microservices
Smaller instances or more VMs per instance - 5MB per VM, 10K
VMs/hardware server
Higher performance
6 millisecond boot
No context switches
No memory copying between kernel and applications
Server-less Functions (with servers)! — 45 microsecond response
Jitsu

15

So How Do We Include Only The Code We Need?

* The C Library Analogy Is The Key
* The C Library Is Actually A “Middle Ware Layer”
* It Converts Standard C Function Calls Into Equivalent Kernel System Calls

* Instead of Handing The Function Call Off As a System Call, What If We
Extended the C Library to Include the Appropriate Kernel Code?

* Instead of the C Library Passing a “Printf()” Call To The Kernel, the Library Can Include
the Machine Instructions to Do The Actual I/O

* Everything Has To Be Running in Privileged Mode (“Ring 0”), But That’s OK
Since We Are Only Running Our One Application

* We Don’t Need “Protection” and Resource Allocation
* This is Essentially the Same as Running Threads — No Isolation

Where do unikernels come from?
Decomposing existing monolithic operating systems

BSD Unix/Mach microkernel — a large number of OS functions have been

moved out of the kernel
Anykernel (NetBSD)
Specialized language libraries (OCaml, Haskell, Erlang)

16

This Is How The “Library Operating System” Concept Started

* Common Operating System Functions, Drivers, and Protocols Were
Written As a Library of Functions

* The First Libraries Were Written in Functional Languages
* MirageOS — OCaml
* HalVM — Haskell
* Ling — Erlang
* These Proved the Concept — More Secure, Higher Performance,
Increased Reliability, Reduced Resources, Single Address Space,
Reduced or Eliminated Scheduling

* Limited to New Application Development

* When You Link The “Library Operating System” Functions to Your
Application, You Have a Single Executable That Runs Directly on
Hardware Or a Hypervisor...

...You Have A Unikernel!

17

“Of Course It Runs NetBSD!”

* NetBSD, a Version of Unix, is Famous For Its Ability To Be \ ®
Ported To New Hardware NetBSD
* It’s a Monolithic Kernel, But Internally Its Been Structured Into \
Well Defined Functions and Layers

* Library of NetBSD Functions Have Been Created, Called “The
AnyKernel” Concept

* The AnyKernel Concept Allows Existing Application Code,
Designed For the Linux or Unix Operating System To Be
Statically Linked With Operating System Functions and Drivers,
Forming A Unikernel!

18

What Does A Unikernel Look Like??

Configuration Files Unikernel
Application Binary Compiler

Language Runtime

llRing 3”

Kernel Threads

“Ring 0" B[= = = — = —— E—
g. v Filesystem Application Code
———————— “Ring 0”

19

Microservices - Now What Do We Have?

Application Config
Application
Language Runtime
Shared Libraries
Docker Runtime
OS User Processes
0OS Kernel Application Binary
+ Library OS

Hypervisor Hypervisor
-y 0_‘

Hardware Drivers Hardware Drivers 0 s

Hardware Hardware

For Wearables/IOT, It’s Even Simpler

Application
+
Library OS
+

Dedicated Hardware Drivers

Hardware

21

Practical Unikernels and Library Operating Systems

MirageOS (OCaml)

RumpKernel (C/C++ NetBSD AnyKernel)
ClickOS (runs Click NFV language)
HalLVM (Haskell)

Ling (Erlang)

HermitCore (C/C++/FORTRAN/Go)
IncludeOS (C/C++)

OSv (C/C++/Java/Ruby/JavaScript)
Runtime.js (JavaScript)

L]

Practical Unikernels and Library Operating Systems
MirageQOS
RumpKernel
ClickOS (runs Click NFV language)
HalLVM (Haskell)
HermitCore (C/C++/FORTRAN/Go)
IncludeOS (C/C++)
OSv (C/C++/Java/Ruby/JavaScript)
Runtime.js (JavaScript)

22

What About Microsoft?

* Daunting...

* It’s Monolithic Kernel divided across inter-related files and DLLs (800+ Win32 system calls,
400+ NT system calls)

Windows Architecture

|

DLLs | | System Services H Login/GINA [

[

|
St
servers | | Kernel32 | [critical services | [user32/ Gl |

Usecinode: |} ntdll / run-time library]

Kemel-mode [Trap interface / LPC]

Security refmon || /O Manager ‘ | Memory Mangar| ‘ Procs & threads || Win32 GUI]

Net protocols File systems Filesys run-time Scheduler

[Netinterfaces] [Volume mars]
Net Interfaces| |Volume mars Cache mgr Synchronization

[Object Manager / C: i (registry) |
[Kernel run-time / Hardware ion Layer]

i © Microsoft Corporation 2006

* Prior Efforts - Embedded NT, Embedded XP
* Drawbridge (Microsoft Research) [45 system calls)

Windows is hopeless! (Not Really)
Monolithic kernel divided across inter-related files and DLLs (800+ Win32
system calls, 400+ NT system calls)
Embedded NT, embedded XP
Drawbridge (Microsoft Research) [45 system calls)

23

Apple Might Be Best Poised to Create a Commercial Unikernel

e OSX Started with Mach Microkernel = macOS
* Most of OSX UserLand is BSD

* However...
¢ Performance Modifications Have Made
OSX a Monolithic Kernel

* Apple Has Shown No Interest In Non-
Apple Hardware or Data Center
Environments

Apple is best poised to create a commercial unikernel, but ???

24

. “One Ring To Rule Them All”
unik

A Unikernel Build and Deployment Tool U N I K IS N OT O PI N I O NATE D l
* Modeled After Docker
Integrates with Kubernetes

* Supports: i 2
4 Different Library OSs: Unikernel types Cloud providers
Rumprun
» osv ©SY¥res

IncludeOS

* MirageOS ncludeOS
* 9 Different Hypervisors ——

Oracle VirtualBox
* Amazon AWS .
* Google Cloud
¢ VMWare vSphere
* QEMU
* UKVM

XEN
* OpenStack
* Photon Controller

2 Different Architectures

* Intel x86

ARM

Processor architectures

Developed By Idit Levine (Solo.io) and EMC

Im Not

I'm Just

One Ring to Rule Them All
Unik
Multiple Unikernels/Languages
VM Images for multiple hypervisors and bare metal
Deploys unikernels for Kubernetes management

25

Another Possibility
L= |

I - I
[oo | = =]

SELECT
APP

2

£

* UniKraft
* Similar To UniK
* Being Developed By NEC
* A Xen-Sponsored Project

* Developing a Standardized
Set of OS Libraries

* Build and Deployment Tool

schedulers

§ o ol g
phpm“ = m = =
o -

: @RUN @auug @SELE/FT&?OENFIG uBs %é@

i

On the Horizon — UniKraft
A framework to collect existing unikernel “libraries”
A “build tool” to build new unikernels
“CPAN” or “NPM” for unikernels

26

Drawbacks — Every Rose Has Its Thorn

* New Paradigm

* Lack of Empirical Evidence

* Limited Selection of Libraries and Build Tools

* Existing Applications May Require Modification
* May Be More Difficult to Develop and Debug

Drawbacks?
Hardware or hypervisor specific drivers
Existing applications may not run correctly in a shared memory model

27

DEMO
TIME

* Rumprun Build Tool
* NetBSD Library
* C “Hello World” Program

n:] l.‘l nn‘-L:l‘A
WEIVIVU viItudl vidUulinic

cloudera

Demo (Rumprun)

28

Here What Everybody’s Been Waiting For!!!

29

‘.%M) .~
S P “BTC Pifiata”

e y
QIS

* This Application Holds 10 Bitcoins (582,019.80USD, 3-15-18 16:35)
* Uses TLS Mutual Authentication
* Public Key Certificate is Published

* Guess the Secret Key and the Bitcoins Are Yours
* Secret Key is RSA 4096 — Billions of Years to Guess!!

* Have To Hack The BTC Pinata Server Instead
* http://ownme.ipredator.se

“If You Smash It, You Get To Keep the Pieces”

30

What Is The BTC Pinata?

* |[predator, a VPN Service Provider Implemented a New Transport Layer
Security Protocol Stack

* Written in Ocaml|

* Created a Unikernel Using a Web Server, Their New TLS Stack, and the
MirageOS Library — The Whole Unikernel Image is 1.1 Megabytes!

* The 10 Bitcoins Are an Instant “Bug Bounty”

* Launched 10 February 2015

* No Hacks To-Date

* Source Code is Online (https://github.com/mirleft/btc-pifiata)

BTC Pifiata
PWN20OWN ~ $100K
IPredator
Prove out new TLS implementation
OCaml/MirageQOS
1.1 Mb image size (available on GitHub)

31

BTC Pinata Online Demo

32

Copies of the slides and the talking
points may be downloaded from
the
Formularity website:

https://formularity.com

OK, at this point, hopefully I've demonstrated the security, performance, and
resource savings of unikernels. Given the security problems of current full
operating system |OT devices, | truly believe that unikernels are the single most
effective base for acceptable IOT device security. Thank you! Copies of these slides
and my talking notes will be available on the Formularity website later today, as well
as through the ITPC 2018 website. Are there any questions?...

33

