
Good afternoon. I’m Brad Whitehead. I’m the Chief Scientist at Formularity. Before

I get started, I’d like to thank the folks of the IEEE and the ACMfor giving me the

opportunity to talk to you today at ITPC 2018. In particular, I’d like to thank David

Sol and Al Katz. They have selected an excellent agenda of both interesting and

educational presentations. But most importantly, I’d like to thank you for choosing

to attend this talk. I hope I make it worth your while! Formularity is a small

company and you may not be familiar with us. We develop high security electronic

enrollment forms for things like national identity management programs, financial

institutions, and national health care program enrollments. We are dedicated to

making sure the sensitive personal information you provide on our forms is secure

and protected at all times. In addition to our forms being run by our clients in their

own data centers, we also offer a hosted solution. Since we are potentially storing

valuable, sensitive personal information of our clients’ customers, we are extremely

concerned about security! We take a number of steps to ensure information

remains encrypted; while at rest, while in motion, and especially inbetween ;-) We

are constantly reviewing not only the threats, but new technologies that can help

mitigate these threats. I’m here today to discuss one of these promising new

technologies, unikernels. Unlike typical security measures that impose additional

1

complexity and require additional resources, unikernels are unique in that they

significantly simplify the software and operations, and they reduce resource

requirements. Hence the title of today’s talk – “Win, Win, Win”! To be clear,

Formularity is not yet using unikernels in production, but we are experimenting with

them and anticipate their use in the future.

1

2

What’s an Operating System Good For?

Uniform, standardized access to resources (CPU, I/O, memory, storage, etc.)

Safe sharing of these resources (traffic cop)

Security

3

Anatomy of an Operating System

User Interface (CLI or GUI)

Standard set of tools and applications (“Userland”)

Kernel (privileged, separated from Userland by hardware)

Monolithic (Linux even includes a web server in the kernel!)

Famous flame war between Torvald Linus and Dr. Andrew

Tanenbaum, 1992 Usenet

Microkernel (Mach, Minix)

Context switches

data copying

Unikernels – Why we are here today!

4

5

It’s Good to Be Old!

Specialized OSs

MVS/360

MS-DOS

Apple II BASIC

CPM-80

Standardized OSs – Huge Multiuser Monoliths

Unix(es)

Linux (22 million SLOC and 17 different languages)

RHEL - Userland of 420 million SLOC

Windows (50 million SLOC)

Processes and Threads

Faster instantiation

Shared memory/ no kernel transitions

6

7

8

State-of-the-Art

Shared Servers (Hardware)

Hypervisor (running an OS)

Virtual Machines (each running an OS)

Containers (each with a User Land)

Single Application (and user)

9

Unikernels – Let’s Cut Out The Middle

IOT/Wearables

Dedicated hardware

Unikernel

Single Application

10

Unikernels – Let’s Cut Out The Middle

Microservices

Shared Servers (Hardware)

Hypervisor (running an OS)

Virtual Machine (running a unikernel OS)

Single Application

11

12

Security

Reduced attack surface – .08% of typical

Small enough to possibly be mathematically verified

No tools (no shell, etc.)

No standard system calls – uses ASLR library calls

Immutable – modules and dynamic libraries can’t be added

13

Reduced Cost

IOT/Wearable

Less processing speed

Less memory

Less power/longer battery life

14

Reduced Cost

Microservices

Smaller instances or more VMs per instance - 5MB per VM, 10K

VMs/hardware server

Higher performance

6 millisecond boot

No context switches

No memory copying between kernel and applications

Server-less Functions (with servers)! – 45 microsecond response

Jitsu

15

Where do unikernels come from?

Decomposing existing monolithic operating systems

BSD Unix/Mach microkernel – a large number of OS functions have been

moved out of the kernel

Anykernel (NetBSD)

Specialized language libraries (OCaml, Haskell, Erlang)

16

17

18

19

20

21

Practical Unikernels and Library Operating Systems

MirageOS

RumpKernel

ClickOS (runs Click NFV language)

HaLVM (Haskell)

HermitCore (C/C++/FORTRAN/Go)

IncludeOS (C/C++)

OSv (C/C++/Java/Ruby/JavaScript)

Runtime.js (JavaScript)

22

Windows is hopeless! (Not Really)

Monolithic kernel divided across inter-related files and DLLs (800+ Win32

system calls, 400+ NT system calls)

Embedded NT, embedded XP

Drawbridge (Microsoft Research) [45 system calls)

23

Apple is best poised to create a commercial unikernel, but ???

24

One Ring to Rule Them All

Unik

Multiple Unikernels/Languages

VM Images for multiple hypervisors and bare metal

Deploys unikernels for Kubernetes management

25

On the Horizon – UniKraft

A framework to collect existing unikernel “libraries”

A “build tool” to build new unikernels

“CPAN” or “NPM” for unikernels

26

Drawbacks?

Hardware or hypervisor specific drivers

Existing applications may not run correctly in a shared memory model

27

Demo (Rumprun)

28

29

30

BTC Piñata

PWN2OWN ~ $100K

IPredator

Prove out new TLS implementation

OCaml/MirageOS

1.1 Mb image size (available on GitHub)

31

32

OK, at this point, hopefully I’ve demonstrated the security, performance, and

resource savings of unikernels. Given the security problems of current full

operating system IOT devices, I truly believe that unikernels are the single most

effective base for acceptable IOT device security. Thank you! Copies of these slides

and my talking notes will be available on the Formularity website later today, as well

as through the ITPC 2018 website. Are there any questions?...

33

