
I’m the Chief Scientist at Formularity. Formularity is a small company and you may

not be familiar with us. We develop high security electronic enrollment forms for

things like national identity management programs, financial institutions, and

national health care program enrollments. We are dedicated to making sure the

sensitive personal information you provide on our forms is secure and protected,

even in a cloud environment. In addition to our forms being run by our clients in

their data centers, we also offer a hosted solution. Since our target market are

national scale enrollments, our hosted solution has a backend infrastructure that

can enrollment millions of people per day. Actually, we can scale our backend

systems to handle ANY number of enrollments per day. Specifically because we use

the architecture I’m going to discuss with you today. My talk today is on the Actor

model, Queues, and why Batch Processing is the New Black.

1

Prior to helping to found Formularity, I was a Partner and Master Technology

Architect at Accenture. My specialty, if you will, was national level biometric

identification and border management systems.

Accenture was one of the three original Biometric Service Providers to the

Government of India for their Aadhaar national biometric identification system.

The Unique Identification Authority of India is enrolling 1.1 billion people in the

Aadhaar program; all ten fingers, both irises, and face. We process 1 million

enrollments per day and may move up to two million.

2

I took over as Acccenture’s Chief Architect on the program when we ran into scaling

issues. Initially, we started by using the industry leading biometric middleware.

This product uses an Oracle database as its workflow engine.

When we started processing over 500 thousand biometric enrollments per day, we

hit the transaction limits of the Oracle system. And I don’t mean the limits for our

particular hardware infrastructure, I mean the absolute limits of the Oracle

database. Oracle scales using an architecture they call Real Application Clusters.

3

Basically, you have any number of Oracle databases running on separate servers,

working together. Theoretically, you can have any number of servers in the cluster

and it can scale to any workload. However, with real-world data loads, this infinite

scaling doesn’t happen. It’s difficult to get good benchmarks and case studies on

Oracle products because Oracle clients are prohibited by their license from

publishing any type of benchmarking information,

4

…but one Oracle partner has published data that shows that for the average real-

world workload, most Oracle Real Application Cluster systems stop scaling after 5

nodes in the cluster. This was certainly my experience in India. We had 4 nodes in

the cluster and we couldn’t push more transactions through the system by adding

more nodes or by tuning the nodes we had. And when I say “we”, I mean Oracle

themselves. We had Oracle’s own developers from both Redwood Shores and

Bangalore helping us. My first job as Chief Architect was to replace the Oracle

database-driven workflow system with a new workflow system using the

methodologies I’ll describe to you today. This workflow system easily handles 1

million enrollments per day and since we scale linearly, we can dial in how many

enrollments by just increasing the number of servers.

5

While at Accenture, I was also the Chief Architect on the Department of Homeland

Security’s US VISIT program; now called the Office of Biometric Identity

Management OBIM). This is the system used by Customs and Border Protection

(CBP) at all ports of entry. When you enter the US at an airport or most land border

checkpoints, you provide your fingerprints to the CBP agent. In 10 seconds or less,

we check to make sure you are who you say you are and that you are not on the

Terrorist checklist or the FBI’s warrant system. This was the largest biometric

identification system in the world, until we helped India build their Aadhaar system.

6

I was also Accenture’s Chief Architect on DHS’s Transportation Security

Administration (TSA) Transportation Worker Identification Card system, or TWIC.

Everybody that works at a shipping port or drives a hazardous cargo truck has to

have a TSA-issued biometric TWIC card. We built the new TWIC system using the

architect I’m talking about today.

So, I have the real-world experience on scaling large national level critical systems,

using the architects I’ll be talking about today

I’m also old!! It’s good to be old!!!

7

Everything old become new and exciting again

8

In other words – Been There, Done That, Have the (moth-eaten) T-Shirt!

9

This is never more true than in Computer Science and Information Technology.

For a “young” discipline, it’s amazing how many repeat cycles we have seen.

10

Let’s start at the beginning, or at least 1936…

Who knows who this is? Alan Turing is famous for many things. Being persecuted

by the British government…for cracking the German Enigma machines during World

War 2… for developing the Turing Test used in Artificial Intelligence research. What

I’d like to discuss today is his “Turing Machine” thought experiment.

11

I assume that most of you are familiar with the Turing Machine, so I won’t spend a

lot of time on it. The Turing Machine is a finite state automation that can model

any computing process. Its composition is extremely simple, consisting of an

infinitely long tape divided into cells; a fixed set of characters that can be

individually written into the cells; a read/write head positioned over the tape that

can read or write a character in the cell; a mechanism to move the tape forward or

backwards under the head one cell at a time, and finally, a look-up table of machine

states and actions. This last part is the “program” of the Turing Machine. The

Turing Machine controller…and Turing didn’t necessary think that the controller was

a machine. His notes on what he called the A-Machine makes references to a

possibly human controller. The controller looks at the current state of the machine,

i.e., the character being read and the last matched row of the lookup table and

looks up this new state in the table. The newly matched row tells the controller

which way to move the tape and what character to write in the resulting cell. From

these basic steps, you can write any solvable computation as rows in the state table.

Programming a Turing Machine is long and difficult and actually running useful

program would not be very efficient.

12

More efficient than giving a hundred monkeys type writers but probably only barely

so. Still, the Turing Machine is a small simple algorithm that can be used to model

any modern non-quantum computing method. Think of it like the Lego block of

Computer Science. One of the things you’ll note is that a Turing Machine is single

threaded…

13

In 1973, Carl Hewitt refined the single threaded Turing Machine into a model of

concurrency he labeled as the Actor Model. An Actor is an automation that

receives external input through messages. This is somewhat analogous to Turing’s

infinite tape. Based on a received message, an Actor automation can do one of four

things, it can:

14

Again, simple…..but unlike the Turing Machine, practical instances of Actors can and

have been written. For example, the programming language Erlang is Actor-based.

15

Designed to operate the thousands of simultaneous conversations in a telephone

switch, Erlang and the Actor Model are directly responsible for the Erisson AXD310

telephone having a stated high availability of 9 “9s”. That’s a down time of 31

milliseconds per year. That’s better than anything I’ve ever achieved in a Tier IV

Data Center.

16

Let’s stop and talk about the concept of currency for a moment. Early mainframes

had one processor or means of executing. So it did everything really fast and any

illusions of concurrency were just that – illusions. Everything was sequential. So

everybody built faster processors. The next step up in power was to add multiple

processors to the mainframe. Four was generally the limit because they had to

share memory and I/O connections. These multi-processors worked well so long as

each processor was doing a separate, independent task. One processor might be

calculating employee pay while another was handling customer service reps taking

product orders. However, as soon as more than one processor started sharing the

same resource, problems began to emerge. Unless the processors were physically

synchronized, they could change each other’s intermediate results. And if you

physically synced them, you artificially restricted their speed. So we developed

resource sharing mechanisms like locks and semaphores. Programmers had to start

worrying about things like race conditions and “deadly embraces.” And if they

didn’t worry about them, errors and failures occurred.

17

The same thing has happened on modern microcomputers. We complied with

Moore’s Law by making our processors faster until we hit physical limitations. Then

we developed multi-core microprocessors….and hyper-threaded multi-cores. We

took advantage of these multiple cores and hyper-threads through concurrent

processing; breaking our monolithic process into multiple, interdependent

programs or multi-threaded programs. And we got all the problems of shared

resources; locks, semaphores, race conditions, and deadly embrace.

18

So, now we have exhausted the scaling capabilities of a single computer. We are

clocking the processor as fast as we can, and we are using all its cores and hyper-

threads. How do we scale? Horizontally. We add multiple computers clustered

together to increase the parallelism and apparent speed and scale of the

application.

Finally, we are on the right track. Independent computers offer more resiliency and

availability.

19

However, so long as all the computers in the cluster are inter-dependent, we still

have all the drawbacks of locks, race conditions, etc. We have to use locks and

mutexes; which slowdown throughput and are the source of errors.

This is where Carl Hewitt’s Actor Model comes into the picture. By decomposing

our complex monolithic program into a set of simple services, we can take

advantage of the inherent concurrency of the Actor Model.

So, what are these advantages?

20

21

22

If decomposing complex monolithic programs into smaller, concurrent chunks

sounds familiar, well it is – The hot new buzzword today is “microservices”. If you

don’t know about the Actor Model or don’t remember it from school, you know

microservices are small bits of functionality, but you don’t have any guidelines or

frameworks. By using our “old” knowledge and experience of Actors, we now have

a proven model and pseudo-template to use in defining our microservices and how

they interact. No need to re-invent the wheel ;-)

It has been my personal experience over the last 40 years that human nature quite

often provides the best way of doing something. So my first step is always to

identify how a human would accomplish a given task and then see how it can be

applied to an automated system. This isn’t foolproof, but it’s a good starting point.

So, if we consider our Actors to be actual humans, what services are necessary and

how can we implement them?

23

Our first Actor type is the “Office Worker”. The Office Worker takes messages out of

its message queue, performs an action on them and then sends out the results as

new messages. It’s analogous to an office worker at his or her desk. The process

may be linear, such as performing a mathematical calculation; or it may involve a

decision. If it’s linear, then the Office Worker-type Actor will probably send one

message out to the next cluster of Actors in the overall process. If the Office

Worker performs a decision, the resulting message may be addressed to different

clusters in the application.

24

Our next Actor is the Supply Clerk. Remember Radar O’Reilly from the movie and

television series M*A*S*H? Radar was responsible for all things administrative.

Nobody else could find or do anything administrative but Radar always took care of

everything and never (well, hardly ever) made a mistake. The Supply Clerk-type

Actor encapsulates common resources. Need to update inventory? Don’t allow any

old Actor to change the inventory. If you do, two or more Actors will make

conflicting changes. Make the inventory the responsibility of a single Supply Clerk

Actor instance. If the inventory needs to be updated, send the update request to

the Supply Clerk Actor. Problem solved. So what if you have too many inventory

changes per second for one Supply Clerk? Well, Radar often coordinated with other

Supply Clerks to get a job done. Our computing equivalent are the “scatter-gather”

or the “map-reduce” algorithms. We may have multiple levels of Supply Clerk-type

Actors. The primary inventory manager Supply Clerk may send our update message

to multiple subordinate inventory Supply Clerks, each responsible for its own subset

of the inventory. Or we may use multiple inventory Supply Clerks for redundancy

and consensus. Two factor transactions are ACID but they are also expensive from a

processing time standpoint. For that matter, large portions of the Internet insist

that “eventually consistent” is sufficient. However, if we use redundancy and

25

consensus, we can end up with nearly transactional “strength” within “eventually

consistent” timeframes. As the architect, you have to make the best decision based

on the requirements. The flexibility of the Actor Model doesn’t lock you out of any

options.

25

Our third Actor type is the Supervisor. We all know the Supervisor. Doesn’t do any

useful work but manages the labors of the producers ;-) This doesn’t change in the

Actor Model. But the Supervisor is responsible for the overall application running

smoothly and meeting its processing time requirements. The Supervisor monitors

the health of all the Office Workers and Supply Clerks under its supervision. It can

do this by observing the throughputs of the subordinate Actors, or it can actively

ping subordinate Actors, or by receiving “heartbeat” messages from subordinates.

Regardless of how it monitors the other Actors, it is responsible for messaging

failing Actors to gracefully terminate themselves (after they complete their current

process cycle), or killing the operating system process of the failed Actor. The

Supervisor Actor monitors the performance of the processing cluster for which it’s

responsible and for 2) starting new Actors to handle increased workloads, or 2)

messaging surplus Actors to terminate when the workload decreases. How it does

this workload monitoring is critical and one of the major “secrets” to designing an

infinitely scalable web service. I’ll talk about that next. However, just to finish up

on the Supervisor Actor, Supervisor Actors definitely are hierarchical in nature and

must cooperate with each other. Let’s use two practical examples.

26

First, I mentioned the Supervisor asking a failing Office Worker-type Actor to

terminate itself. This only works if the Office Worker Actor is still interacting. What

if it’s stalled in a loop and won’t read the termination message? The Supervisor

Actor has to ask that the operating system process housing the failing Actor be

terminated. If the Supervisor Actor is on a different server than the Processor

Actor, how is this done? Well, you need a set of Supervisors responsible for making

sure the servers themselves are running. So, in addition to a Supervisor managing a

set of Office Worker Actors, you have a Supervisor managing the servers. Our Office

Worker Supervisor asks the Server Supervisor to terminate the failed Office Worker

Actor. The Server Supervisor sends the message to the Actor on the server

responsible for managing that server. If it kills the failing Office Worker great. If it

doesn’t, then it’s also failing and the Server Supervisor is responsible for killing the

whole server and restarting a new instance.

27

The second example of Supervisor hierarchical cooperation is in supervising the

Supervisors. Or to quote the Roman poet Juvenal “Who watches the watchers?”

Supervisor Actors have their own Supervisors. At the very top layer of our web

service or application, we have a human operator, tied to a pager (what’s a

pager???? Anybody seen one recently?), getting “All quiet” messages on a periodic

basis.

28

OK, now on to the second ancient piece of Computer Science technology that’s key

to our robust, reliable, and infinitely scalable cloud application. The queue is even

older than the Actor Model. Coincidentally enough, one of the first scientific papers

published on queuing theory was by A.K. Erlang in 1909, the same Erlang for which

the Actor-based programming language is named.

29

The best way to connect our Actors is through queues, rather than direct

connections. Why is this? Again, let’s looks at the advantages. First, it gives the

whole system flexibility. If an Actor or set of Actors can’t process messages fast

enough, then the messages build up in an essentially infinite queue instead of being

lost. Momentary slow-downs in processing because of things like garbage

collection or virtual machine startup are automatically buffered by the

interconnecting message queues.

30

Second, I have talked about clusters of Actors. If one instance of an Actor is

insufficient to handle the workload, multiple instances can be created, each picking

the next piece of work to be done off the queue. With the queue, instead of

individual mailboxes for each Actor, Actors can come and go and they all share in

processing the workload. So an Actor won’t send a message off to another Actor

instance. Instead, it will send messages off to the queue(s) of the next Actor cluster.

31

So far, this is analogous to a picking list in a warehouse and a staff of pickers. Each

picker takes the top request off the picking list and goes into the warehouse to

retrieve the required item. How do you determine if you have enough warehouse

staff? Simple, watch the pick list. If it gets progressively longer, you don’t have

enough staff. The pick list will continue to accumulate requests until you can hire

enough staff to stabilize or reduce the list. Simple. Nothing lost and you were able

to monitor a gradually changing situation. What does it mean when the pick list is

empty and you have warehouse staff standing around drinking coffee? Time to

redeploy them to another part of the company. With our Actors, we’ll just ask them

to terminate themselves. OK, let’s connect a couple of dots here. I said the

Supervisor Actor monitored the workload and started or stopped Office Worker or

Supply Clerk Actors based on this workload. The Supervisor monitors the workload

by watching the input message queue to the Actor cluster. The Supervisor sees the

queue increasing in size long before the situation becomes critical. If you monitor

workload by measuring the CPU utilization of the server, or the I/O throughput, or

the memory utilization, you are going to see sudden spikes that may kill your server

or cause your Actors to fail before you can react. The queue gives you a much

better and safer means of monitoring.

32

What happens if an Actor dies before completing the processing of a message? Is

the message lost? [What do you mean you lost my deposit!!!!?] Or do you devise a

scheme where messages have to be retained by their originating Actor until the

processing Actor can confirm completion? With this type of complexity, you are

setting yourself up for failure. Instead, “use the queue, Luke”. When an Actor

instance takes a message out of the queue, don’t destroy the message, just put it in

a “being worked” status. If the processing Actor doesn’t tell the queue it has

completed the requested action within a certain timeframe, the queue can just

move the message back into the “ready” status and give it to the next member of

the cluster that asks for a message. The message isn’t removed completely from

the queue until it’s been completed and acknowledged. Worried about a whole

queue failing? Simple – send all the messages to two redundant queues. Let the

two queues keep themselves in relative synchronization. If an Actor finds it can’t

talk to its primary message queue, it just connects to the redundant secondary

queue and keeps on processing. You won’t lose any messages but you might re-

process several messages. If the processing isn’t idempotent, then create a unique

key for each message and keep track of keys. Discard any duplicate messages or

results. This avoids [What do you mean you deducted my one withdrawal twice!!!!]

33

Finally, queues eliminate active load balancers and the need to register and

deregister Actors. As Supervisors create new Actors, the Actors start pulling the top

message out of the queue. We have already discussed what happens if an Actor

dies or terminates. Again, no need to deregister. If you have security concerns [and

you should!!!], use public keys to authenticate connection requests to a queue, use

cryptographic hashes (digital signatures) to confirm both the originator of a

message and the integrity of a message, and use cryptographic encryption to

protect the contents of a message. Cryptography is cheap. Use it everywhere!

34

Load balancers! Before I tell you why load balancers are evil, let me talk about the

third critical item for a successful large web application. Philosophy and Newton

tell us that there are always two forces in equal balance. Call them Yin and Yang, or

Action and Reaction. Or Push and Pull. In data flow, you can push data or you can

pull it. And I’m here to tell you unequivocally that most system architects get it

wrong! In Douglas Adam’s “The Hitchhiker’s Guide to the Galaxy”, the quote is

“We'll be saying a big hello to all intelligent lifeforms everywhere and to everyone

else out there, the secret is to bang the rocks together, guys.” To paraphrase Mr.

Adams, the secret to scalable processing systems is really to “pull”, not “push”. But

you knew that. After all, your parents and your teachers always told you not to

push. Why not? Well to quote another old comedy sketch [anybody here old

enough to remember Firesign Theater?], there’s Fudd’s First Law of Opposition: “If

you push something hard enough, it WILL fall over”. When you push messages or

requests to a server, you end up crashing the server. If you are monitoring the CPU

or memory of the server, you’ll get a warning before the server crashes, but will it

be in time to allow you to start up new servers and to register them with your

message pusher? We’ve already seen queues give us sufficient time to start new

Actors and there’s no need to register with a message pusher when the Actors are

35

responsible for pulling their own messages.

35

If you don’t believe me, here’s Lucille Ball to demonstrate the flaw of pushing work.

Do you want to do this to your own processes?

<https://www.youtube.com/watch?v=8NPzLBSBzPI>

Actors are computer programs and as such they aren’t lazy. An Actor will process

messages as fast as its execution environment permits. OK, to be fair, let me clarify

– you can push messages to queues. After all, they are just glorified accordion

pipes. They can accept and store messages much faster than your Actors can

process them. And if a single queue (or redundant queue pair) can’t keep up with

the incoming messages, create multiple queues and let your Actor cluster pull

messages from the multiple queues in a “round-robin” fashion.

To finish queuing off, load balancers are a symptom, not a solution. Load balancers

are subject to configuration problems, especially as you are adding and removing

Actors from a cluster. They push rather than allowing processors to pull. How do

they know which Actor to push to? Round robin? That has the potential to leave

processors idle. By monitoring CPU loads? That’s not an exact science. And what

happens when an application does a garbage collection pause after your load

36

balancer pushed a message to it? Finally, what happens when your load balancer

fails? Sure redundant load balancers. But now you have to have coordinated

communications between the two load balancers and their network connection has

to be reliable.

So, the keys to building a successful, infinitely scaling web application is to use the

1973 Actor Model now called a microservice; the 1909 Queue, which is just batch

programming; and being polite and not pushing.

36

I just want to touch on two remaining aspects of a successful large scale program; 1)

how to maintain state and; 2) how to handle long-running processes.

I’ve talked about Actor clusters and multiple Actors pulling their work assignments

out of a common queue. This only works if the Actors are, for the most part,

“stateless”. Each Actor sees each new message as a new task, with no knowledge of

previous tasks. I could tell you all the ways that traditional web servers keep or

share state, but I don’t want to drag this out. In an Actor model system, put the

state in the message. In other words, when an Actor puts up a new message, the

message holds all the information required to accomplish the Actor’s process. The

Actor doesn’t have to go fetch the process state from a data base or from shared

memory. This also implies that messages are not immutable. Each Actor, as it

completes its processing and sends the message on to the next step in the overall

process must include everything that the next Actor will require to complete its

task.

37

Just like no man is an island, very few meaningful business applications are

completely self-contained. In most cases, there is a need to access information

that’s external to our application. If it’s a Federal Health Insurance Exchange, we

may need to confirm information from an enrollee’s Federal Tax return. The IRS is

great about this. They collect all your information requests, run a batch job at night

and send you back the answers the next day. So it could be as long as 24 hours

before your request is satisfied. Now, you could just create a new Actor for each

outstanding request. As the answers come back, each Actor could then complete

their process and go on to the next job. But if we are enrolling 1 million people per

day, that’s a lot of stalled Actors standing around waiting. Instead of creating stalled

Actors, let’s use our Supply Clerk-type Actors. As the IRS Supply Clerk Actor to put

the original message into a database. When the IRS results come in, ask the IRS

Supply Clerk to retrieve the original message. Add the IRS results to the original

message and put it into the queue of the cluster handling the next step in the

enrollment process. You also have a nice error detection process. If a message

stays in the database more than a day, then the IRS probably lost the original

request and we can send it again. By the same token, if the IRS sends us back a

result for which we don’t have an original message stored, then we have an internal

38

problem and we immediately raise a red flag.

38

OK, at this point, I think you know enough to go out and architect your own large

scale web application. And, I’m asking you to pass this information on to other

architects and developers. I never want our government to be embarrassed again

like we were with the Heathcare.gov exchange

In Review

39

40

41

