
“Cartoonist Gary Larson Taught Me
How To Build Infinitely Scalable

High Performance Systems”

Brad Whitehead

Chief Scientist

Formularity

SouthEast LinuxFest

SELF 2023

10 June 2023

Who is Brad Whitehead ?!?!
• Former Partner and Master Technology Architect with Accenture

• National Scale Biometric Identification and Border Management Systems
• US VISIT (one of CBP’s Biometric Border Control programs)
• DHS Transportation Worker’s Identification Card (TWIC)
• TSA PreCheck
• Republic of India’s Aadhaar Program

• Presently Co-Founder and Chief Scientist of Formularity
• Secure Electronic Enrollment Forms for the Government, Healthcare, Finance, and Legal Industries
• We Offer a Hosted Solution, in Addition to Our Primary, On-Premise Products
• We Take the Security of Our Client’s Information VERY Seriously
• We Constantly Investigate and Explore New Advances in Information Security and Assurance
• Currently Open Sourcing Aspects of the Aadhaar Biometric Processing Technology

AADHAAR – “The Last Day”
Comparing 1 Million New Enrollees…

…Against 1 Billion Existing Enrollees

1x106 X 1x109 = 1x1015

1 Quadrillion Comparisons in a day!

If you are using a database for workflow, that’s:

11 Billion Transactions/Second!

(It’s Even More If You Individually Log Each of 10 Fingers, 2 Irises, and a Face)

Scaling a System (Ideally)

The Root of the Problem: Shared Resources

What Goes Wrong:
• Corruption
• Race Conditions
• Deadly Embrace
• Blocked Processes and Threads

Solutions(?):
• Locks
• Mutexes
• Semaphores
• Latches
• Monitors

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

P’s and Queues

 (Actors)1)

2)
3)

4)
(Unikernels in Light VMs)

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

 (Actors)1)

Carl Hewitt
The Actor Model

1) ...make local decisions based on its finite state
table (Script or Program);

2) ...create new Actors;

3) ...send out messages;

4) ...adjust its internal state to a new state (which
will reflect on how it acts to future messages)

5) ...communicate through messages in mailboxes

Actors...

Actors = Microservices

1)Each Actor is small, accomplishing a single function. The finite state
table (or its programming equivalent) is bounded and traceable. This
means that the “correctness” of each Actor type is more easily
established.

2)Each Actor type can be better tested because of its encapsulation
nature and message passing framework.

3)Actors can be easily improved or re-factored without affecting the rest
of the application.

4)Actors can be easily connected together to respond to changes in
requirements or to provide new services.

5)The only way one Actor can affect another Actor is through explicit
messaging. This makes it much easier to see and avoid concurrency
problems.

Actor-Microservice Characteristics

6) Actors can create new Actors, to replace failed Actors or to increase
the processing power at any step in the overall process

7) Actors can encapsulate common resources and act as service or
resource provider

8) Multiple Actors can increase availability and/or persistence

9) If each Actor is run on a separate server, the Actor code may fit
entirely within the processor cache, greatly accelerating the execution
speed

10) If each Actor is run on a separate server, geographical diversity for
improved resiliency is possible.

Actor-Microservice Characteristics – Part Deux

Actors – “Good Stuff!

Business Process Actor Patterns

1. The Office Worker

2. The Supply Clerk

3. The Supervisor

Incoming Message

“Office Worker”

(Calculation)

Outgoing Message (to next step)

Incoming Message

Path “A” Outgoing Message
“Office Worker”

(Decision)

Path “B” Outgoing Message

Actor Type: “Office Worker”

Incoming Request Message

“Supply Clerk”

Outgoing Results Message

Actor Type: “Supply Clerk”

Inventory

“Supply
Clerk”

“Supply
Clerk”

“Supply
Clerk”

“Supply
Clerk”

Inventory
(A-G)

Inventory
(H-N)

Inventory
(O-Z)

Request
Messages Result Messages

Actor Type: “Supervisor”

“Office
Worker”

Monitor Throughput
Message

“Office
Worker”

“Office
Worker”

“Supervisor”

“Office
Worker”

Create New Actor
Message

(Failing)

Termination MessageHeartbeat Message

Responsible for the Health, Configuration
and

Performance of Their Actors

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

P’s and Queues2)

QUEUE

(Infinite)

Actor

Actor

Actor
(Coming

Or
Going)

Actor

The Next Step’s
 Queue

Actor

Actor
(Coming

Or
Going)

Actor

The Next Step’s
Queue

“Office
Worker”

Supervisor
Monitors

The
Queue Length

Creates New Actors
Or

Terminates Actors,
Based on Queue Trend

Actor

Actor
(Coming or Going)

Actor A

The Next Step’s
Queue

Be
in

g
W

or
ke

d
Ne

xt
 M

sg

1. Actor A is processing the “red”
message.

2. The next Actor to request a message
will be given “Next Msg”

3. If Actor A doesn’t confirm to the
Queue (within X seconds) that it sent
the message on to the Next Step
Queue, the red will become the “Next
Msg” and will be handed back out

• Use Public Key cryptography to authenticate
connection requests from Actors to Queues

• Use Cryptographic Hashes (digital signatures) to
both confirm the originator of Messages, and the
integrity of the Messages

• Use Encryption to protect the contents of
Messages

Cryptography is Cheap!!

Use it Everywhere!!

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

3)

We'll be saying a big hello to all intelligent lifeforms everywhere and to everyone else out
there, the secret is to bang the rocks together pull, don’t push, guys.”

- Douglas Adams, Hitchhiker's Guide to the Galaxy

Fudd’s First Law of Opposition: “If you push something hard enough, it WILL fall over.”
- Firesign Theater, 1971

LOAD
BALANCERS

Actor

Actor
(Coming

Or
Going)

Actor

The Next Step’s
 Queue

Your Load Balancer
May Push Your Servers

Right Over...

...Instead, Let Your
Applications Pull Their

Workload From a
Common Queue

To Recap...

The keys to building a successful, infinitely scaling application is to:

1. Use the modified Actor Model patterns

Office Worker
Supply Clerk
Supervisor

2. Wire them together with Queues, and

3. Pull, not Push!

Maintaining State
The key to being able to create new instances of Actors to
handle the workload is that they must be “stateless”
• Each new message is a new action, without any

dependence on previous messages or actions

Don’t
• Don’t store processing state in a database or shared

memory
• A database adds significant complexity to the resiliency

and reliability of the application
• Databases are slow

• Don’t use shared memory
• This becomes a shared resource that must be protected

(with locks, mutexes, etc.)
• Shared memory doesn’t scale

Maintaining State

Do
● Keep all state information in the message

When an Actor reads a message, it should have everything it needs to
perform it’s task
This implies that messages are not immutable

Handling External Input
Almost every Real-World Application needs to fetch input from an external source (a
source not under its control)

Two choices:

1. Let your Actors block and wait for the fetched information
• This could easily result in a large number of stalled Actors
• Incredible resource hog

2. Record the request in a database
• The database’s Supply Clerk Actor is responsible for parsing incoming results and

matching them with request records
• When a result matches up with a request, the Supply Clerk puts a new processing

request message in the appropriate queue
• The Supply Clerk does a periodic scan of outstanding request records. Old records

may be an indication of lost requests and may need to be resent
• Result records without a matching request record are an error and must be flagged

to the appropriate Supervisor Actor

• Keep Actors small, with one defined action or decision
• Don’t build a number of small programs and call them

Actors
• Encapsulate common resources in Actors – This eliminates

locks and race conditions
• Connect Actors together using Queues
• Monitor workloads by monitoring the size of the Queues –

Supervisor Actors create new Actors or message surplus
Actors to terminate

• Queues only remove acknowledged Messages
• Use “transaction numbers” on truly critical Messages to

make certain actions idempotent

• You can “push” into a Queue, but Actors must ALWAYS “pull”
from the Queues

• Allow Actors to transparently connect and detach (die) from
Queues – no load balancers or registrations

• Keep “state” in the Message between Actors – Each Message
is self-sufficient

• Use cryptographic signatures to authenticate Messages and
maintain integrity

• Use cryptographic encryption to protect sensitive
information in Messages

• Use redundant Actors and Queues for persistence and high
availability

• “Map-Reduce”, Paxos, and Raft are your friends

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

4)
Unikernels in Light VMs

“Super Containers”

● 1400 Times More Secure Than a Well-Configured Docker
Container

● Boots 37 Times Faster Than That Docker Container

● Can Run 10 Times More Microservices (Actors) on the Same
Physical Hardware

● Can Be Managed by Kubernetes or Apache Mesos (or an Actor
Supervisor)

What Is This Incredible New Technology?

It’s A Unikernel Image Running On A Lightweight Virtual
Machine Hypervisor

(If You Are Interested, Come See Me During SELF. If
There’s Enough Interest, Perhaps We Can Do a BOF in the

Evening)

Carl Hewitt. “Actor Model of Computation for Scalable Robust Information Systems: One IoT is
No IoT” 1. Symposium on Logic and Collaboration for Intelligent Applications„ Mar 2017, Stanford,
United States. ffhal-01163534v7f, https://hal.science/hal-01163534/document, retrieved 1 June 2023

Zero MQ, An open-source universal messaging library, https://zeromq.org, retrieved 1 June 2023

“SEDA: An Architecture for Well-Conditioned, Scalable Internet Services”, Matt Welsh, David Culler,
and Eric Brewer, Computer Science Division University of California, Berkeley
{mdw,culler,brewer}@cs.berkeley.edu, http://www.sosp.org/2001/papers/welsh.pdf, retrieved 1 June
2023

** “scaling web applications with message queues” Lenz Gschwendtner, Linux.conf.au 2012 --
Ballarat, Australia https://www.youtube.com/watch?v=aOrGq9yb6og, retrieved 1 June 2023

“My VM is Lighter (and Safer) than your Container”, SOSP ’17, October 28, 2017, Shanghai, China,
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf, retrieved 1 June 2023

“Unikernels - Rethinking Cloud Infrastructure”, http://unikernel.org, retrieved 1 June 2023

“Unikernel and Immutable Infrastructure”, https://github.com/cetic/unikernels, retrieved 1 June 2023

** Unik: A Platform for Automating Unikernels Compilation and Deployment, Idit Levine, LISA16
https://www.youtube.com/watch?v=GuRTsCw1Utw, retrieved 1 June 2023

...as well as Wikipedia entries on: Actor Model, Event-Driven Architecture, Message Queue, and
Unikernel ** = highly recommended videos

https://hal.science/hal-01163534/document
https://zeromq.org/
mailto:brewer%7D@cs.berkeley.edu
http://www.sosp.org/2001/papers/welsh.pdf
https://www.youtube.com/watch?v=aOrGq9yb6og
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf
http://unikernel.org/
https://github.com/cetic/unikernels
https://www.youtube.com/watch?v=GuRTsCw1Utw
https://hal.science/hal-01163534/document
https://zeromq.org/
mailto:brewer%7D@cs.berkeley.edu
http://www.sosp.org/2001/papers/welsh.pdf
https://www.youtube.com/watch?v=aOrGq9yb6og
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf
http://unikernel.org/
https://github.com/cetic/unikernels
https://www.youtube.com/watch?v=GuRTsCw1Utw

Copies of the slides and the talking
points may be downloaded from

the
Formularity website:

https://formularity.com

All illustrations and videos were used under the Fair Use Doctrine of US Copyright Law, for the purpose of education.

“Cartoonist Gary Larson Taught Me
How To Build Infinitely Scalable

High Performance Systems”

Brad Whitehead

Chief Scientist

Formularity

SouthEast LinuxFest

SELF 2023

10 June 2023

Good morning and thank you for taking the time to attend this talk. My name is
Brad Whitehead. As the title says, over the next hour, I’m going to tell you how
cartoonist Gary Larson’s Farside helped me learn how to build infinitely scaling,
high performance systems. But first, I have to apologize. I’m not going to tell you
anything new here. You already know what I’m about to tell you. You will leave
here thinking “Brad, you didn’t tell me anything I didn’t already know!” However, I
ask that you humor me and listen to the presentation anyway.

Before I get started, I want to thank the staff of SouthEast Linux Fest. These
volunteers put on a premier event. I’m honored that my presentation was
accepted.

So who is Brad Whitehead and why is he qualified to tell me things I already
know? I’m the Chief Scientist at Formularity. Formularity is a small company and
you may not be familiar with us. We develop high security electronic enrollment
forms for things like national identity management programs, financial institutions,
and national health care program enrollments. We are dedicated to making sure
the sensitive personal information you provide on our forms is secure and
protected, even in a cloud environment. In addition to our forms being run by our
clients in their data centers, we also offer a hosted solution. Since our target
market are national scale enrollments, our hosted solution has a backend
infrastructure that can enrollment millions of people per day. Actually, we can
scale our backend systems to handle ANY number of enrollments per day.
Specifically because we use the architecture I’m going to discuss with you today.

Who is Brad Whitehead ?!?!
• Former Partner and Master Technology Architect with Accenture

• National Scale Biometric Identification and Border Management Systems
• US VISIT (one of CBP’s Biometric Border Control programs)
• DHS Transportation Worker’s Identification Card (TWIC)
• TSA PreCheck
• Republic of India’s Aadhaar Program

• Presently Co-Founder and Chief Scientist of Formularity
• Secure Electronic Enrollment Forms for the Government, Healthcare, Finance, and Legal Industries
• We Offer a Hosted Solution, in Addition to Our Primary, On-Premise Products
• We Take the Security of Our Client’s Information VERY Seriously
• We Constantly Investigate and Explore New Advances in Information Security and Assurance
• Currently Open Sourcing Aspects of the Aadhaar Biometric Processing Technology

Prior to helping to founding Formularity, I was a Partner and Master Technology
Architect at Accenture. My specialty, if you will, was national level biometric
identification and border management systems. I was Accenture’s Chief
Architect on US VISIT, the basis of he fingerprint identification system that
Customs and Border Protection (CBP) uses when you enter the country, the
Transportation Worker’s Identification Card (TWIC) system. You need a TWIC
card to work at a US Port or to drive a truck with hazardous chemicals, like
gasoline. And TSA Pre-Check. I’m sure everybody here is familiar with Pre-
Check. These are all fingerprint identification systems. They are also “guns and
badges” systems, where the Government tells you what you and can’t do, based
on your fingerprints. However, my biggest source of pride is having been
Accenture’s Chief Architect on the largest human rights and social enablement
program in the world. This is the Republic of India’s Aadhaar system. I
apologize for my poor pronunciation of Aadhaar. I mention Aadhaar and people
say that they have never heard of it. Then they see the logo and say “Oh, you
mean Aadhaar!”. My poor Ango-Saxon ears can’t hear the difference.

2

So, is anybody familiar with Aadhaar? India has the second largest population
in the world – approximately 1.1 billion people. It is also one of the wealthest
countries. Unfortunately, that wealth is very unevenly distributed. 80% of the
population falls below the poverty line. Fortunately, India is very socially
responsible and has large social programs to help the poorer citizens with food
rations, cooking gas, guaranteed employment, etc. However, wherever you
have lots of cash being distributed, you have lots of corruption and graft.
Many of the people for whom these programs are intended have no “official”
identity. No drivers license, no passport, often no fixed address. These people
are then easily cheated out of their Government rights. The Unique
Identification Authority of India (UIDAI) was founded under the Gandhi/Singh
Congress Party administration and it continues under the Modi BJP
administration. UIDAI’s Aadhaar program voluntarily enrolled over one billion
Indians into a biometrically-based identification system. No longer can a
corrupt supervisor fail to pay his or her workers. These workers can now open
bank accounts and have their wages directly deposited, with an audit trail.
Likewise, a rice merchant can’t give rice to his or her friends and then claim it
went to people with ration cards.
As part of Aadhaar, we registered all 10 fingers and both irises of over one
billion Indian residents. Actually, collecting and enrolling the biometrics was
the easy part. After we collected a set of biometrics, we had to compare the
new set with every other set that had already been enrolled, to keep people
from accidentally or intentionally creating two or more identities

Accenture was one of the three original Biometric Service Providers
for Aadhaar. We had to process 1 million enrollments per day. Day
One was easy – Compare 1 million sets of biometrics against 1
million. Child’s play.

3

AADHAAR – “The Last Day”
Comparing 1 Million New Enrollees…

…Against 1 Billion Existing Enrollees

1x106 X 1x109 = 1x1015

1 Quadrillion Comparisons in a day!

If you are using a database for workflow, that’s:

11 Billion Transactions/Second!

(It’s Even More If You Individually Log Each of 10 Fingers, 2 Irises, and a Face)

Now, there is no indexing or hashing system for fingerprints. The
system must compare each fingerprint or iris print against every
existing print. What a database person would call a full table scan.
Now, consider the “last day” of Aadhaar – we have to compare our
daily 1 million enrollees against the 1 billion existing enrollees! 1
Quadrillion comparisons or 11 billion transactions per second!

I took over as Acccenture’s Chief Architect on the program when we
ran into scaling issues. Initially, we started by using the industry
leading biometric middleware. This product uses an Oracle database
as its workflow engine.

When we started processing over 500 thousand biometric enrollments per
day, we hit the transaction limits of the Oracle system. And I don’t mean the
limits for our particular hardware infrastructure, I mean the absolute limits of
the Oracle database. Oracle scaled, at the time, using an architecture they
call Real Application Clusters.

4

Basically, you have any number of Oracle databases running on
separate servers, working together. Theoretically, you can have any
number of servers in the cluster and it can scale to any workload.
However, with real-world data loads, this infinite scaling doesn’t
happen. It’s difficult to get good benchmarks and case studies on
Oracle products because Oracle clients are prohibited by their
license from publishing any type of benchmarking information,

5

...but one Oracle partner has published data that shows that for the average
real-world workload, most Oracle Real Application Cluster systems stop
scaling after 5 nodes in the cluster. This was certainly my experience in India.
 We had 4 nodes in the cluster and we couldn’t push more transactions
through the system by adding more nodes or by tuning the nodes we had.
And when I say “we”, I mean Oracle themselves. We had Oracle’s own
developers from both Redwood Shores and Bangalore helping us. My first job
as Chief Architect was to replace the Oracle database-driven workflow system
with a new workflow system using the methodologies I’m talking to you about
today. This workflow system easily handles 1 million enrollments per day and
since we scale linearly, we can dial in how many enrollments by just
increasing the number of servers.

6

Scaling a System (Ideally)

Here’s the traditional “scaling slide”. We start with vertical scaling, using one
server and beefing it up as much as possible. Soon, we exhaust the scaling
capabilities of a single computer. We are clocking the processors as fast as we
can, and we are using all its cores and hyper-threads. So we go to horizontal
scaling. We add multiple computers clustered together to increase the
parallelism and apparent speed and scale of the application.

At least we are finally, we are on the right track. Independent computers offer
more resiliency and availability.

The Root of the Problem: Shared Resources

What Goes Wrong:
• Corruption
• Race Conditions
• Deadly Embrace
• Blocked Processes and Threads

Solutions(?):
• Locks
• Mutexes
• Semaphores
• Latches
• Monitors

So, what went wrong with Real Application Clusters and its horizontal
scaling? Even though each server is separate, the overall database
has shared resources. If we don’t protect the shared resources, we
risk corruption and deadlock. So we have developed “simple”
protection mechanisms, like locks and mutexes.

8

This diagram shows a “simple” (“air quotes”) thread synchronization
mechanism. I see states like “suspend” and “wait”, not what I
want in a scaling system!

9

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

P’s and Queues

 (Actors)1)

2)
3)

4)
(Unikernels in Light VMs)

There are four “ingredients” in the “secret sauce” for developing infinitely scaling,
high performance systems like both the Aadhaar and Formularity enrollment
systems.

In keeping with our “I Ain’t Afraid of No Bug” theme – Actors, Queues, Pull, don’t
Push, and unikernels running on lightweight virtual machines. BTW, I’m using
Unique’s logo since there’s no industry logo for unikernels, Solo-io makes one of
the best unikernel construction toolkits...and their unicorn is cute :-)

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

 (Actors)1)

Let’s start with Actors – the information processing paradigm, not Ramis, Murray,
and Aykroyd

Carl Hewitt
The Actor Model

In 1973, Carl Hewitt published the Actor Model of concurrency. Basically, an
Actor is an automation that receives external input through messages.
Based on a received message, an Actor automation can do one of five
things, it can::

12

1) ...make local decisions based on its finite state
table (Script or Program);

2) ...create new Actors;

3) ...send out messages;

4) ...adjust its internal state to a new state (which
will reflect on how it acts to future messages)

5) ...communicate through messages in mailboxes

Actors...

1) Make a decision based on its programming or script. 2) It can
replicate and create a new Actor. 3) It can send out a message to
another Actor, 4) it can change its internal settings, and 5) it
communicates through messages in a mailbox. So, I’ve noted the
last item in red, because is where I disagree with Hewitt and where
we’ve changed his original Actor model. I’ll explain in a slide or so.
While Hewitt’s model was mathematical and theoretical, practical
instances of Actors can and have been written. For example, the
programming language Erlang is Actor-based.

13

Designed to handle the thousands of simultaneous conversations in a
telephone switch, Erlang and the Actor Model are directly responsible for the
Erisson AXD310 telephone having a stated high availability of 9 “9s”. That’s a
down time of 31 milliseconds per year. That’s better than anything I’ve ever
achieved in a Tier IV Data Center!

14

Actors = Microservices

So, Actors are a perfect working definition of a microservice. What’s
the definition of a microservice? Who knows! There is no formal
definition and everybody has their own opinion. I personally like the
Actor model as a definition of a microservice.

15

1)Each Actor is small, accomplishing a single function. The finite state
table (or its programming equivalent) is bounded and traceable. This
means that the “correctness” of each Actor type is more easily
established.

2)Each Actor type can be better tested because of its encapsulation
nature and message passing framework.

3)Actors can be easily improved or re-factored without affecting the rest
of the application.

4)Actors can be easily connected together to respond to changes in
requirements or to provide new services.

5)The only way one Actor can affect another Actor is through explicit
messaging. This makes it much easier to see and avoid concurrency
problems.

Actor-Microservice Characteristics

Again, in homage to our theme this year, I’ve denoted those characteristics
that help in producing error-free code

16

6) Actors can create new Actors, to replace failed Actors or to increase
the processing power at any step in the overall process

7) Actors can encapsulate common resources and act as service or
resource provider

8) Multiple Actors can increase availability and/or persistence

9) If each Actor is run on a separate server, the Actor code may fit
entirely within the processor cache, greatly accelerating the execution
speed

10) If each Actor is run on a separate server, geographical diversity for
improved resiliency is possible.

Actor-Microservice Characteristics – Part Deux

Actors as a definition for microservice has so many advantages, I had to put
them on two slides

17

Actors – “Good Stuff!

“Actors – Good Stuff!!! (double thumbs up)

It has been my experience that human organization quite often provides the best
way of doing something. So my first step is always to identify how a person
would do a given task and then see how it can be applied to an automated
system. This isn’t foolproof, but it’s a good starting point. So, if we consider our
Actors to be actual people, what services are necessary and how can we
implement them?

Business Process Actor Patterns

1. The Office Worker

2. The Supply Clerk

3. The Supervisor

We’ve identified three business process Actor patterns: the Office Worker, the
Supply Clerk, the Supervisor

Incoming Message

“Office Worker”

(Calculation)

Outgoing Message (to next step)

Incoming Message

Path “A” Outgoing Message
“Office Worker”

(Decision)

Path “B” Outgoing Message

Actor Type: “Office Worker”

So, in a corporate organization, who does the work? An office
worker. He or she sits there, picks a file out of the Inbox, does
something to it, and puts the results into one or more Outboxes. Our
Office Worker Actor is one of three patterns that form the bricks of
our business process. It takes in a message, performs a calculation
or transformation on the message, using its internal programming
and state, and outputs the results. It might be making a decision
and therefore it will send the results out to one or more other Actors

20

Incoming Request Message

“Supply Clerk”

Outgoing Results Message

Actor Type: “Supply Clerk”

Inventory

“Supply
Clerk”

“Supply
Clerk”

“Supply
Clerk”

“Supply
Clerk”

Inventory
(A-G)

Inventory
(H-N)

Inventory
(O-Z)

Request
Messages Result Messages

Our next Actor pattern is the Supply Clerk. The Supply Clerk-type Actor
encapsulates common resources. Need to update inventory? Don’t allow an
Office Worker Actor to change the inventory. If you do, two or more Actors will
make conflicting changes. Make the inventory the responsibility of a single
Supply Clerk Actor instance. If the inventory needs to be updated, send the
update request to the Supply Clerk Actor. Problem solved. So what if you
have too many inventory changes per second for one Supply Clerk? We have
a couple of different choices: We can use an Hadoop-like “scatter-gather” or
the “map-reduce” configuration with multiple Supply Clerk Actors. Or, much
like the database itself, we can shard the Supply Clerks. A Office Worker with
a Distributed Hash Table (DHT) could provide routing information for requests
to multiple Supply Clerks. We can definitely use multiple Supply Clerks for
redundancy, persistence, and consensus. As the architect, you have to make
the best decision based on the requirements. The flexibility of the Actor Model
doesn’t lock you out of any options.

21

Actor Type: “Supervisor”

“Office
Worker”

Monitor Throughput
Message

“Office
Worker”

“Office
Worker”

“Supervisor”

“Office
Worker”

Create New Actor
Message

(Failing)

Termination MessageHeartbeat Message

Responsible for the Health, Configuration
and

Performance of Their Actors

Our third pattern is the Supervisor. The Supervisor is responsible for the
overall application running smoothly and meeting its processing time
requirements. The Supervisor monitors the health of all the Office Workers
and Supply Clerks under its supervision. It can do this by observing the
throughputs of the subordinate Actors, or it can actively ping subordinate
Actors, or by receiving “heartbeat” messages from subordinates. Regardless
of how it monitors the other Actors, it is responsible for messaging failing
Actors to gracefully terminate themselves (after they complete their current
process cycle), or killing the operating system process of the failed Actor. The
Supervisor Actor monitors the performance of the processing cluster for which
it’s responsible and for 2) starting new Actors to handle increased workloads,
or 2) messaging surplus Actors to terminate when the workload decreases.
How it does this workload monitoring is critical and is dependent on the
second ingredient in our Secret Sauce. I’ll talk about that next. However, just
to finish up on the Supervisor Actor, Supervisor Actors definitely are
hierarchical in nature, with Supervisors supervising subordinate Supervisors.

22

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

P’s and Queues2)

QUEUE

Queues, or ordered lists are a basic storage structure in Computer Science.
In our case, the Queue is a FIFO stack – “First in is First Out”, and what we
are storing are messages between Actors.

24

(Infinite)

Actor

In Hewitt’s original Actor model, the Actors used mailboxes, sending
messages to other Actor’s mailboxes and receiving messages
through their own mailbox. A mailbox is just a type of Queue. So
far, we are in-sync with the original Actor model as Hewitt
envisioned it.

25

Actor

Actor
(Coming

Or
Going)

Actor

The Next Step’s
 Queue

In fact, this is exactly how you efficiently manage the number and types of
Actors in your application. Watch the size of a Queue. If messages are
backing up and the Queue is getting larger, you need to start up more Actors
and attach them to that Queue. By the same token, if the Queue is shrinking
or empty, you have too many Actors attached to it. Have the monitoring
Supervisor terminate several of the surplus Actors.

26

Actor

Actor
(Coming

Or
Going)

Actor

The Next Step’s
Queue

“Office
Worker”

Supervisor
Monitors

The
Queue Length

Creates New Actors
Or

Terminates Actors,
Based on Queue Trend

So far, this is analogous to a picking list in a warehouse and a staff of
pickers. Each picker takes the top request off the picking list and
goes into the warehouse to retrieve the required item. How do
you determine if you have enough warehouse staff? Simple,
watch the pick list. If it gets progressively longer, you don’t have
enough staff. The pick list will continue to accumulate requests
until you can hire enough staff to stabilize or reduce the list.
Simple. Nothing lost and you were able to monitor a gradually
changing situation. What does it mean when the pick list is
empty and you have warehouse staff standing around drinking
coffee? Time to redeploy them to another part of the company.
With our Actors, we’ll just ask them to terminate themselves. OK,
let’s connect a couple of dots here. I said the Supervisor Actor
monitored the workload and started or stopped Office Worker or
Supply Clerk Actors based on this workload. The Supervisor
monitors the workload by watching the input message queue to
the Actor cluster. The Supervisor sees the queue increasing in
size long before the situation becomes critical. If you monitor
workload by measuring the CPU utilization of the server, or the I/O
throughput, or the memory utilization, you are going to see
sudden spikes that may kill your server or cause your Actors to
fail before you can react. The queue gives you a much better and
safer means of monitoring.

27

Actor

Actor
(Coming or Going)

Actor A

The Next Step’s
Queue

Be
in

g
W

or
ke

d
Ne

xt
 M

sg

1. Actor A is processing the “red”
message.

2. The next Actor to request a message
will be given “Next Msg”

3. If Actor A doesn’t confirm to the
Queue (within X seconds) that it sent
the message on to the Next Step
Queue, the red will become the “Next
Msg” and will be handed back out

What happens if an Actor dies before completing the processing of a
message? Is the message lost? [What do you mean you lost my
deposit!!!!?] Or do you devise a scheme where messages have to
be retained by their originating Actor until the processing Actor can
confirm completion, like a TCP transmission? With this type of
complexity, you are setting yourself up for failure. Instead, “use the
queue, Luke”. When an Actor instance takes a message out of the
queue, don’t destroy the message, just put it in a “being worked”
status. If the processing Actor doesn’t tell the queue it has
completed the requested action within a certain timeframe, the
queue can just move the message back into the “ready” status and
give it to the next member of the cluster that asks for a message.
The message isn’t removed completely from the queue until it’s
been completed and acknowledged. Worried about a whole queue
failing? Simple – send all the messages to two redundant queues.
Let the two queues keep themselves in relative synchronization. If
an Actor finds it can’t talk to its primary message queue, it just
connects to the redundant secondary queue and keeps on
processing. You won’t lose any messages but you might re-process
several messages. If the processing isn’t idempotent, then create a
unique key for each message and keep track of keys. Discard any
duplicate messages or results. This avoids [What do you mean you
deducted my one withdrawal twice!!!!]

28

• Use Public Key cryptography to authenticate
connection requests from Actors to Queues

• Use Cryptographic Hashes (digital signatures) to
both confirm the originator of Messages, and the
integrity of the Messages

• Use Encryption to protect the contents of
Messages

Cryptography is Cheap!!

Use it Everywhere!!

Finally, queues eliminate active load balancers and the need to
register and deregister Actors. As Supervisors create new Actors,
the Actors start pulling the top message out of the queue. We have
already discussed what happens if an Actor dies or terminates.
Again, no need to deregister. If you have security concerns [and you
should!!!], use public keys to authenticate connection requests to a
queue, use cryptographic hashes (digital signatures) to confirm both
the originator of a message and the integrity of a message, and use
cryptographic encryption to protect the contents of a message.
Cryptography is cheap. Use it everywhere!

29

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

3)

Now, onto the third ingredient…

We'll be saying a big hello to all intelligent lifeforms everywhere and to everyone else out
there, the secret is to bang the rocks together pull, don’t push, guys.”

- Douglas Adams, Hitchhiker's Guide to the Galaxy

Fudd’s First Law of Opposition: “If you push something hard enough, it WILL fall over.”
- Firesign Theater, 1971

Here’s where Gary Larson’s Farside cartoon taught me the key to
success. Pull things, don’t push them! A corollary of this is Fudd’s
First Law of Opposition – If you push something hard enough, it will
fall over. So what happens when you push too many requests to a
server? It crashes.

Here’s Lucille Ball to graphically demonstrate to us why you don’t want to
push…

31

LOAD
BALANCERS

Actor

Actor
(Coming

Or
Going)

Actor

The Next Step’s
 Queue

Your Load Balancer
May Push Your Servers

Right Over...

...Instead, Let Your
Applications Pull Their

Workload From a
Common Queue

A load balancer is a bully, pushing your servers over. Instead, put your
requests in a queue and let your servers pull the requests. Is the queue
backing up or are processing time too slow? Just spin up more server
processes and attach them to the queue.

33

The keys to building a successful, infinitely scaling application is to:

One, Use the modified Actor Model patterns of the Office Worker, the Supply
Clerk, and the Supervisor. Connect them together with Queues, and always be
polit and Pull, don’t Push ;-)

Maintaining State
The key to being able to create new instances of Actors to
handle the workload is that they must be “stateless”
• Each new message is a new action, without any

dependence on previous messages or actions

Don’t
• Don’t store processing state in a database or shared

memory
• A database adds significant complexity to the resiliency

and reliability of the application
• Databases are slow

• Don’t use shared memory
• This becomes a shared resource that must be protected

(with locks, mutexes, etc.)
• Shared memory doesn’t scale

I just want to touch on two remaining aspects of a successful large
scale program; first, how to maintain state and; second how to
handle long-running processes.

I’ve talked about Actor clusters and multiple Actors pulling their work
assignments out of a common queue. This only works if the Actors
are, for the most part, “stateless”. Each Actor sees each new
message as a new task, with no knowledge of previous tasks.

35

Maintaining State

Do
● Keep all state information in the message

When an Actor reads a message, it should have everything it needs to
perform it’s task
This implies that messages are not immutable

In an Actor model system, put the state in the message. In other
words, when an Actor puts up a new message, the message holds all
the information required to accomplish the Actor’s process. The Actor
doesn’t have to go fetch the process state from a data base or from
shared memory. This also implies that messages are not immutable.
Each Actor, as it completes its processing and sends the message on to
the next step in the overall process must include everything that the
next Actor will require to complete its task.

Handling External Input
Almost every Real-World Application needs to fetch input from an external source (a
source not under its control)

Two choices:

1. Let your Actors block and wait for the fetched information
• This could easily result in a large number of stalled Actors
• Incredible resource hog

2. Record the request in a database
• The database’s Supply Clerk Actor is responsible for parsing incoming results and

matching them with request records
• When a result matches up with a request, the Supply Clerk puts a new processing

request message in the appropriate queue
• The Supply Clerk does a periodic scan of outstanding request records. Old records

may be an indication of lost requests and may need to be resent
• Result records without a matching request record are an error and must be flagged

to the appropriate Supervisor Actor

very few meaningful business applications are completely self-
contained. In most cases, there is a need to access information
that’s external to our application. If it’s a Federal Health Insurance
Exchange, we may need to confirm information from an enrollee’s
Federal Tax return. The IRS is great about this. They collect all your
information requests, run a batch job at night and send you back the
answers the next day. So it could be as long as 24 hours before your
request is satisfied. Now, you could just create a new Actor for each
outstanding request. As the answers come back, each Actor could
then complete their process and go on to the next job. But if we are
enrolling 1 million people per day, that’s a lot of stalled Actors
standing around waiting. Instead of creating stalled Actors, let’s use
our Supply Clerk-type Actors. As the IRS Supply Clerk Actor to put
the original message into a database. When the IRS results come in,
ask the IRS Supply Clerk to retrieve the original message. Add the
IRS results to the original message and put it into the queue of the
cluster handling the next step in the enrollment process. You also
have a nice error detection process. If a message stays in the
database more than a day, then the IRS probably lost the original
request and we can send it again. By the same token, if the IRS
sends us back a result for which we don’t have an original message
stored, then we have an internal problem and we immediately raise
a red flag.

37

• Keep Actors small, with one defined action or decision
• Don’t build a number of small programs and call them

Actors
• Encapsulate common resources in Actors – This eliminates

locks and race conditions
• Connect Actors together using Queues
• Monitor workloads by monitoring the size of the Queues –

Supervisor Actors create new Actors or message surplus
Actors to terminate

• Queues only remove acknowledged Messages
• Use “transaction numbers” on truly critical Messages to

make certain actions idempotent

OK, at this point, I think you know enough to go out and architect
your own large scale web application.

In Review...

38

• You can “push” into a Queue, but Actors must ALWAYS “pull”
from the Queues

• Allow Actors to transparently connect and detach (die) from
Queues – no load balancers or registrations

• Keep “state” in the Message between Actors – Each Message
is self-sufficient

• Use cryptographic signatures to authenticate Messages and
maintain integrity

• Use cryptographic encryption to protect sensitive
information in Messages

• Use redundant Actors and Queues for persistence and high
availability

• “Map-Reduce”, Paxos, and Raft are your friends

First, you can “push” into a Queue, but Actors must ALWAYS “pull”
from the Queues

Second, allow Actors to transparently connect and detach (die) from
Queues – no load balancers or registrations

Third, keep “state” in the Message between Actors – Each Message
is self-sufficient

Fourth, use cryptographic signatures to authenticate Messages and
maintain integrity

Fifth, use cryptographic encryption to protect sensitive information in
Messages

Sixth, use redundant Actors and Queues for persistence and high
availability, and finally

Seventh, “Map-Reduce”, Paxos, and Raft are your friends

39

The Four Ingredients
in the

“Secret Sauce”
for

Developing Infinitely Scaling High Performance Systems

4)
Unikernels in Light VMs

So at this point, you have thousands of Actors, with thousands more coming and
going as Supervisors balance out the queues. Do we need Googleplex data
centers? Even with Docker and Kubernetes, we may still talking a large number
of physical servers.

The solution, and final ingredient in our Secret Sauce are Super Containers!

Super Containers - That’s not their real name, but what else would you call a
container that’s:

● 1400 Times More Secure Than A Well-configured Docker Container
● Boots 37 Times Faster Than That Docker Container
● Can Run 10 Times More Microservices On The Same Physical Hardware
● Can Be Managed By Kubernetes Or Apache Mesos

“Super Containers”

● 1400 Times More Secure Than a Well-Configured Docker
Container

● Boots 37 Times Faster Than That Docker Container

● Can Run 10 Times More Microservices (Actors) on the Same
Physical Hardware

● Can Be Managed by Kubernetes or Apache Mesos (or an Actor
Supervisor)

What Is This Incredible New Technology?

It’s A Unikernel Image Running On A Lightweight Virtual Machine Hypervisor

What Is This Incredible New Technology?

It’s A Unikernel Image Running On A Lightweight Virtual
Machine Hypervisor

(If You Are Interested, Come See Me During SELF. If
There’s Enough Interest, Perhaps We Can Do a BOF in the

Evening)

Carl Hewitt. “Actor Model of Computation for Scalable Robust Information Systems: One IoT is
No IoT” 1. Symposium on Logic and Collaboration for Intelligent Applications„ Mar 2017, Stanford,
United States. ffhal-01163534v7f, https://hal.science/hal-01163534/document, retrieved 1 June 2023

Zero MQ, An open-source universal messaging library, https://zeromq.org, retrieved 1 June 2023

“SEDA: An Architecture for Well-Conditioned, Scalable Internet Services”, Matt Welsh, David Culler,
and Eric Brewer, Computer Science Division University of California, Berkeley
{mdw,culler,brewer}@cs.berkeley.edu, http://www.sosp.org/2001/papers/welsh.pdf, retrieved 1 June
2023

** “scaling web applications with message queues” Lenz Gschwendtner, Linux.conf.au 2012 --
Ballarat, Australia https://www.youtube.com/watch?v=aOrGq9yb6og, retrieved 1 June 2023

“My VM is Lighter (and Safer) than your Container”, SOSP ’17, October 28, 2017, Shanghai, China,
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf, retrieved 1 June 2023

“Unikernels - Rethinking Cloud Infrastructure”, http://unikernel.org, retrieved 1 June 2023

“Unikernel and Immutable Infrastructure”, https://github.com/cetic/unikernels, retrieved 1 June 2023

** Unik: A Platform for Automating Unikernels Compilation and Deployment, Idit Levine, LISA16
https://www.youtube.com/watch?v=GuRTsCw1Utw, retrieved 1 June 2023

...as well as Wikipedia entries on: Actor Model, Event-Driven Architecture, Message Queue, and
Unikernel ** = highly recommended videos

All illustrations and videos were used under the Fair Use Doctrine of US Copyright Law, for the purpose of education.

Here a few key links to further information of the Actor Model, using queues for
performance control, and why you should always pull, not push. I’ve flagged two
YouTube videos that are particularly applicable

Copies of the slides and the talking
points may be downloaded from

the
Formularity website:

https://formularity.com

All illustrations and videos were used under the Fair Use Doctrine of US Copyright Law, for the purpose of education.

OK, so did you learn anything new? Anything you didn’t already know before you
came in here today? See, I told you so.

Thank you for your time. A copy of the slides with my speaker script is on the
Formularity website.

I’ll take any questions now.

	Slide 1
	Slide 2
	Slide 3
	AADHAAR – The Last Day
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 1
	Slide 2
	Slide 3
	AADHAAR – The Last Day
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

