
 

Super Containers:
Unikernels and Virtual 

Machines

South Carolina Linux Users Group

Brad Whitehead, Chief Scientist – Formularity

July 11, 2023

Good evening.  I’m Brad Whitehead.  I’m the Chief Scientist 
at Formularity. 

1



 

• Former Partner and Master Technology Architect with Accenture
• National Scale Biometric Identification and Border Management Systems

• US VISIT (one of CBP’s Biometric Border Control programs)
• DHS Transportation Worker’s Identification Card (TWIC)
• TSA PreCheck
• Republic of India’s Aadhaar Program

• Presently Co-Founder and Chief Scientist of Formularity
• Secure Electronic Enrollment Forms for the Government, Healthcare, 

Finance, and Legal Industries
• We Offer a Hosted Solution, in Addition to Our Primary, On-Premise 

Products
• We Take the Security of Our Client’s Information VERY Seriously
• Currently Open Sourcing Aspects of the Aadhaar Biometric Processing 

Technology 
• We Constantly Investigate and Explore New Advances in 

Information Security and Assurance

Who is Brad Whitehead?

Prior to helping to founding Formularity, I was a Partner and Master Technology Architect at 
Accenture.  My specialty, if you will, was national level biometric identification and border 
management systems.  I was Accenture’s Chief Architect on US VISIT, the basis of he 
fingerprint identification system that Customs and Border Protection (CBP) uses when you 
enter the country, the Transportation Worker’s Identification Card (TWIC) system.  You need 
a TWIC card to work at a US Port or to drive a truck with hazardous chemicals, like 
gasoline.  And TSA Pre-Check.  I’m sure everybody here is familiar with Pre-Check.  These 
are all fingerprint identification systems.  They are also “guns and badges” systems, where 
the Government tells you what you and can’t do, based on your fingerprints.  However, my 
biggest source of pride is having been Accenture’s Chief Architect on the largest human 
rights and social enablement program in the world.  This is the Republic of India’s Aadhaar 
biometric identification system.
My present employer, Formularity, develops electronic enrolment forms for large scale 
benefits and services management systems.  Think – enrollment in a National Health Care 
program ;-)
Since we handle personally identifiable information, we take security very seriously.  As part 
of this, we routinely review and assess new technologies in security, with a eye toward 
applying it to our business.  This evening I’m going to be discussing one of these promising 
technologies that we have our eye on and have done some investigation – 
SuperContainers! 

2



Super Containers - That’s not their real name, but what else 
would you call a container that’s:

● 1400 Times More Secure Than A Well-configured Docker 
Container

● Boots 37 Times Faster Than That Docker Container
● Can Run 10 Times More Microservices On The Same 

Physical Hardware
● Can Be Managed By Kubernetes Or Apache Mesos

“Super Container”
● 1400 Times more Secure than a well-configured 

Docker Container

● Boots 37 times Faster than that Docker Container

● Can run 10 times more Microservices on the same 
physical hardware

● Can be managed by Kubernetes or Apache Mesos



What Is This Incredible New Technology?
It’s A Unikernel Image Running On A Lightweight Virtual Machine 
Hypervisor

What Is This Incredible New Technology?

It’s a Unikernel Image running on a Lightweight 
Virtual Machine Hypervisor



To answer this, let’s take a look at a modern operating system
Doesn’t matter if we choose Windows, Linux, UNIX, or whatever 
Apple’s calling their desktop operating system these days!
They are all basically the same

What’s A Unikernel?

● To answer that question, we have to take a look at the 
structure of a modern Operating System

● Doesn’t matter if it’s Microsoft Windows, Linux, UNIX, 
Mac OS X  OS X  macOS, etc.

● All the mainstream Operating Systems have the same 
fundamental anatomy



The Anatomy of An Operating 
System

“UserLand”
• Where Applications 

Run
• No Privileges
• Can Not Access 

Resources 
• Can Not “Talk” to 

Other Programs 

“The Kernel”
• Runs in Special 

Hardware Mode – 
“Ring 0”

• Only Program That 
Can Access or 
Allocate Resources 

• Copies Data 
Between Programs

Anatomy of an Operating System
User Interface (CLI or GUI)
Standard set of tools and applications (“Userland”)
Kernel (privileged, separated from Userland by hardware)
Monolithic (Linux even includes a web server in the kernel!)
Famous flame war between Torvald Linus and Dr. Andrew 

Tanenbaum, 1992 Usenet
Microkernel (Mach, Minix)
Context switches
data copying

6



Operating system kernels have grown enormously over time!
Linux 30 million SLOC
Windows estimated to be 50 million SLOC
Now, Steve McConnell has conducted a number of studies on 
the defect rates in modern system software.  He estimates that 
there are between 15 and 50 defects per 1000 lines of code!  
Now not all defects result in errors.  A defect is anything that 
does not meet the requirements or is not as intended by the 
developer.  So a defect could be as simple as a misspelled word 
in an error message.  Or as serious as a buffer overrun or a “use 
after free” pointer error!
Using McConnell’s figures, the Linux kernel - just the kernel - has 
330,000 to 1.1 million defects
Windows has 750,000 to 2.5 million defects

Growth of Operating Systems
● Linux Kernel is now 30 Million Lines Of Code!

● Windows is estimated at 50 Million Lines Of Code!

● With an industry average Of 15-50 Defects Per 1000 
Lines Of Code*: 
− Linux(Just the Kernel) = 330,000 To 1.1 Million 

Defects
− Windows = 750,000 To 2.5 Million Defects
*(Steve McConnell, “Code Complete 2”, 2005)



That was just the kernel.  The kernel needs support software to 
boot and to perform standard services.  This support software, 
along with all the other applications that come with an operating 
system distribution, is that userland I referred to a moment ago.  
Red Hat Enterprise Linux is the leader in Linux software for 
businesses.  Their userland software is around 420 million lines 
of code.  Again, taking McConnell’s numbers, each of your your 
bank servers could have 6.3 to 21 million defects running!  

It Gets Worse!
● The “Userland” Support Software is often 10 to 20 

times larger than the Kernel!

● Red Hat Enterprise Linux (RHEL) Userland is 
approximately 420 Million Lines Of Code 

− Try not to think about the 6.3 to 21 Million Defects 
running on your Bank’s Server!



Why is the kernel so big!?!? For one thing, a large number of 
device drivers are routinely compiled into the kernel.  That way, 
whether you load the operating system on an IBM server or a 
SuperMicro, it just works - magic!  There are device drivers in the 
kernel for hardware that no longer exists.  For a number of years, 
Amazon’s standard Linux images had floppy disk and audio card 
drivers compiled into them.  How many floppy drives are there in 
an Amazon data center?  Who uses those audio cards?  In 2015, 
the Venom malware used a defect in the floppy disk driver to 
compromise both the VM in which it was running, as well as the 
physical host.  How many other device driver defects are out 
there, waiting to be exploited?  

Can It Get Even Worse?!?!
● The Kernel Is Full of Junk!
● A large number of Device Drivers are routinely compiled 

into the kernel, regardless of the actual hardware in the 
computer
− There are Device Drivers for hardware that no longer 

exists
− Amazon Ami Images Have Had Drivers for Floppy 

Disks and Audio Cards
● In 2015, The Venom Vulnerability (CVE-2015-3456) used a 

flaw in the Floppy Disk Controller (FDC) Driver to 
compromise both Physical and Virtual Machines



It’s not just device drivers.  There are a large number of file 
system drivers and communications protocols compiled into the 
kernel.  Many, most, of these are esoteric and probably won’t be 
needed by your applications.  But they are still sitting there, 
taking up space, processing power, and the reliability budget 

Can It Get Even Worse?!?! (Continued)
● Likewise, there are thousands of Storage and 

Communications Protocols in the Kernel that will not 
be used in your Application

● Linux recognizes 7 different Executable Formats, even 
though the vast majority of applications (including 
yours) are in ELF Format

● Each of these Extra, Unused Chunks Of Code (with 
its 15-50 Defects/1000 SLOC) is a Potential Hack 
waiting to happen!



What If We Cut Out All The Parts We 
Don’t Need?

● Code Traces show that the average Application uses 
less than 0.08% of the total code in the Kernel!

● Take the Standard C Library as an example:

○ The C Library contains thousands of Functions, 
but a modern linker only includes the actual 
Functions (and Code) That an Application uses

● Could we do the same with our Operating System?

When you code trace an average application, you find that 
it only uses 0.08% of the code in the kernel!  Wouldn’t it be 
great if we could jettison the extra 99.92% of the kernel we 
don’t need?
Most of our modern libraries and linkers do this type of 
jettisoning.  The C library has thousands of functions, but 
when it’s linked into an executable, only the functions that 
are actually used are linked into the code.
Wouldn’t it be great if our kernel only contained the 
functions we needed?

11



What About Actors (Microservices)?
• Run a Single Application
• As a Single User
• With a known set of Hardware Drivers
• 1 Or 2 Communications Protocols
• Important:

● Speed (Startup and Latency)
● Reliability
● Security (from Unauthorized Access - “Hacking”)
● Repeatability (Multiple Identical Servers)

So what are the functions we need?
Let’s make up a list.  Let’s assume our application is a 

microservice or perhaps a Internet of Things application
• Run A Single Application
• As A Single User
• Known Set Of Hardware Drivers
• 1 Or 2 Communications Protocols
• Speed (Startup And Latency)
• Reliability
• Security (From Unauthorized Access - “Hacking”)
• Repeatability (Multiple Identical Servers)

12



Keeping Only The Parts of the Operating 
System We Actual Use

• What does it buy us?:
○ Let’s start with Security:

● Greatly Reduced Attack Surface (99.92% Reduction)

● Potentially a small enough subset to be Mathematically 
Verifiable

● We don’t need any Userland Applications (Bye-bye 410 
Million Lines of Potentially Flawed Code!)

● No ability to run Malicious Code or Hacking Tools on our 
Server or IoT Device

So, when we strip away 99.92% of the kernel code, what 
do we get?

Well, first - Security
Reduced attack surface – .08% of typical 
Small enough to possibly be mathematically verified
No tools (no shell, etc.)

13



More Benefits
We can Statically Link everything (including the Kernel 
Functions) and our software becomes Immutable

 
● No Injection Attacks
● No Re-Configuration Attacks
● Vastly Reduced “Return Oriented Programming” 

(ROP) Vulnerability

Increased Reliability and Improved Security means 
Reduced Devops Costs!

We can statically link everything together
At that point, our code becomes immutable
Modules and dynamic libraries can’t be added, code can’t 

be injected

14



Increased Performance
• Smaller, less memory intensive Images mean more Virtual Machines 

per Hardware Server
• 5 Megabyte Virtual Machines = 10,000 VMs per Physical Server
• Smaller than most Docker Containers

• 6 Millisecond Boot Times
• 45 Microsecond Throughput Times because:

• No Context Switches
• No Information Copying
• Single Address Space

We also get huge performance gains!
Smaller instances or more VMs per instance - 5MB per VM, 

10K VMs/hardware server
6 millisecond boot times 
Since all the code is running in Ring 0 as privileged code, 

there are no context switches and no need to copy 
memory between kernel and applications

Server-less Functions (with servers)! – 45 microsecond 
response 

15



How To Include Only The Needed Code?
● Again, The C Library analogy is the key

○ The C Library is actually a “Middleware Layer”
○ It converts standard C Function Calls into equivalent 

Kernel System Calls
○ Instead of handing the Function Call off as a System 

Call, What If we extended the C Library to include 
the appropriate Kernel Code?
■ Instead of the C Library passing a “Printf()” Call to 

the Kernel, the Library can include the machine 
instructions to do he actual I/O

How do we include only the required kernel code?
Again, let’s look at the the C Library.  The C Library 

presents a standard POSIX interface to the application’s 
C code.

When a function in the library is called, the library prepares 
all the parameters and then executes specific operating 
system calls.

Why don’t we combine the C library and the kernel code it 
calls?  Then, when we link in the C library code, we get 
both the POSIX interface code and the underlying kernel 
functionality 

16



In a “Library Operating System”
• Common Operating System Functions, Drivers, And 

Protocols are Written As A Library Of Functions
• When You Link these “Library Operating System” 

Functions to your Application, you have a single 
Executable that runs directly on hardware or a 
Virtual Machine…

…In other words, 
you have a 
Unikernel! 

This approach is called, obviously enough, a “library 
operating system”
• Common Operating System Functions, Drivers, And 

Protocols Are Written As A Library Of Functions
• When You Link These “Library Operating System” 

Functions To Your Application, You Have A Single 
Executable That Runs Directly On Hardware Or A 
Hypervisor…

• in other words, you have a Unikernel!

17



What Does A Unikernel Look Like??

Unikernel
Compiler

OS 
Functions

“Ring 
0”

“Ring 
3”

“Ring 
0”

Visually, this is what a unikernel looks like:
On the left, you have the conventional software stack.  The 
bottom four layers are operating system code.  They run in 
Ring 0 and can access the hardware directly.  The top three 
layers are userland and application code.  They are 
unprivledged and run in Ring 3.
On the right hand side is our unikernel.  The unikernel 
compiler has extracted only the operating system 
functionality we need and combined it with our application 
code.  For the most part, we don’t need any userland code. 
 Our new unikernel runs in Ring 0

18



For IoT, It’s Even Simpler

Hardware

Application
+

Library OS
+

Dedicated Hardware 
Drivers

The situation is even better for IoT applications.  Especially 
since we know exactly what hardware we are running on!

19



Unikernels Are Only Half The Answer To Small, Fast, Secure 
Containers
The Other Half is the Light(er) Weight Virtual Machine

However, Unikernels are only half the 
answer to Small, Fast, Secure 
Containers

The other half is the Light(er) Weight 
Virtual Machine



I don’t want to spend a lot of time on virtual machines.  I assume 
most of you are familiar with them, at least to the degree we 
need in order to discuss super containers.
● Virtual Machine Monitor (VMM) Or “Hypervisor” Typically Sits 

Between The Real Hardware And Multiple Operating 
Systems

● Gives Each Operating System Instance The Illusion Of 
Running On Its Own Hardware – A “Virtual Machine”

● Strong Physical Isolation Between Operating Systems

Virtual Machines 

● Virtual Machine Monitor 
(VMM) Or “Hypervisor” 
typically sits between the real 
Hardware and Multiple 
Operating Systems

● Gives each Operating System Instance the Illusion of 
running on its own Hardware – A “Virtual Machine”

● Strong Physical Isolation between Operating Systems



We don’t develop software the way we used to.  Wide-
spread use of containers have changed the development 
and deployment front, based on their characteristics

● Applications Are Deployed As Complete Images, Ready To 
Run, Instead Of Being Installed

● Containers Are Replaced, Rather Than Being “Patched”
● Containers Support The Concept Of “Microservices”, 

Allowing Complex Applications To Be Built From Single-
function Services Wired Together Through Orchestration 
Managers

● Multiple Containers Can Be Started And Stopped In 
Response To Traffic Loads

Containers Have Changed The Way We 
Develop and Deploy Software

● Applications are deployed as complete Images, ready to 
run, instead of being “Installed”

● Containers are Replaced, rather than being “Patched”

● Containers support the concept of “Microservices”, 
allowing complex Applications to be built from Single-
Function Services wired together through Orchestration 
Managers

● Multiple Containers can be started and stopped in 
response to Traffic Loads



But Containers have a number of drawbacks...

● Limited Isolation Between Containers – Not A Security 
Mechanism

● Difficult To Strip Down Userland And Container Images
− Bloat Consumes Memory And Processing Resources

● Differences In Production And Development Environments - 
Containers are generally “sold” on the fact that development 
and production are supposed to be the identical 
environments, but in reality, they never are.  You have 
development and debugging tools in the Development 
Container that you (better!) remove from Production.  Hence 
the two environments are different.  The difference may not 
make a different (should not make a difference), but then 
again an accidentally unsatisfied dependency may be 
discovered in Production at 4AM

Drawbacks of Containers
● Limited Isolation between Containers – Not a Security 

Mechanism

● Difficult to strip down Userland and Container Images
− Bloat consumes Memory and Processing 

Resources

● Differences between the Production and Development 
Environments



● Significantly Reduced The Start-up Time Of A Virtual 
Machine

● Reduced Performance-Robbing Overhead

This New Generation Of Hypervisors Are Called “LightVMs”

Meanwhile, Virtual Machine Technology
 Has Not Stood Still

Recent optimizations to both the Xen and the Linux “Kernel-
based Virtual Machine” (KVM) Hypervisors, as well as new 
Hypervisors like Firecracker have:

● Significantly reduced the start-up time of a Virtual Machine
● Reduced performance-robbing overhead

This New Generation Of Hypervisors Are Called “LightVMs”



● Combined With Unikernels, These LightVMs Can Launch 
Microservices In As Little As 4 Milliseconds

● This Is Comparable To The Linux Kernel’s Exec/Fork Times 
Of Approximately 1 Millisecond And Significantly Faster Than 
A Docker-type Container’s Start-up Time Of 150 Milliseconds

Next Generation LightVMs - Speed

● Combined with Unikernels, these LightVMs can launch 
Microservices in as little as 4 milliseconds

● This is comparable to the Linux kernel’s Exec/Fork 
times of approximately 1 millisecond and significantly 
faster than a Docker-type container’s start-up time of 
150 milliseconds



● Additionally, The Reduced Footprint Of The Unikernel 
Requires Only About 1/10th The Memory Of A Docker-type 
Container Running On A Debian Kernel

● Since Memory Is Quite Often The Limiting Factor In Properly 
Designed Microservices, This Means That 10 Times More 
Unikernel/LightVM Microservice Instances Can Be Run On 
The Same Physical Hardware.

Next Generation LightVMs - Size

● Additionally, the reduced footprint of the Unikernel 
requires only about 1/10th the memory of a Docker-
type Container running on a Debian kernel

● Since memory is quite often the limiting factor in 
properly designed Microservices, this means that 10 
times more Unikernel/LightVM Microservice Instances 
can be run on the same physical hardware.



The top line are Docker Containers being launched, starting at 
150 milliseconds, going to 1 full second at the 3000th container 
launched.  The line doesn’t extend beyond 3000 containers 
because the physical machine ran out of memory (128GB) at that 
point.
Now, notice the red line.  Those are equivalent functionality 
unikernels.  They all launch at a fairly consistent 4 milliseconds.  
Memory exhaustion now occurs at north of 8000 unikernel VMs 
on the same hardware.
Remember the old “C10K challenge” - How many http sessions a 
single web server could support?  Well the new equivalent is 
“VM100K” - running 100,000 VMs on the same physical host.  
Think what that does to cloud computing economics.  Amazon 
going from 300 VMs per physical server to 100,000 VMs!

LightVM Unikernel vs Docker

LightVM Boot Times On A 64-Core Machine With 128GB Memory vs Docker Containers
Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi 
Yasukata, Costin Raiciu, and FelipeHuici. 2017. My VM is Lighter (and Safer) than your Container. 
In Proceedings of SOSP ’17: ACM SIGOPS 26th Symposium on Operating Systems Principles, 
Shanghai, China, October 28, 2017 (SOSP ’17),16 pages.https://doi.org/10.1145/3132747.313276



● More Complete Function Libraries
● Mainstream Programming Languages

Practical Unikernels

Unikernels have, until recently, been the province of 
laboratories and research projects

This has changed as Unikernel technology has matured:

● More complete Function Libraries
● More mainstream programming languages are now 

supported



One Approach – Reuse - AnyKernel
• NetBSD, A version of UNIX, is famous for its ability to be ported 

to new Hardware
• It’s a Monolithic Kernel, but has been internally structured into 

well defined Functions and Layers
• A Library of NetBSD Functions has been created, called “The 

Anykernel” concept
• The Anykernel concept allows existing Application Code, 

designed for Linux or UNIX (POSIX) Operating Systems to be 
statically linked with Operating System Functions and Drivers, 
forming a Unikernel!

• NetBSD, A Version Of UNIX, Is Famous For Its Ability 
To Be Ported To New Hardware

• It’s A Monolithic Kernel, But Has Been Internally 
Structured Into Well Defined Functions And Layers

• A Library Of NetBSD Functions Has Been Created, 
Called “The Anykernel” Concept

• The Anykernel Concept Allows Existing Application 
Code, Designed For The Linux Or UNIX (POSIX) 
Operating Systems To Be Statically Linked With 
Operating System Functions And Drivers, Forming A 
Unikernel!

29



Another Approach – Ground Up – 
NanoVMs’ OPS

• What access does a modern Cloud Application require?
− A Packet Interface for network communications
− A Block Interface for storage
− A Serial Port to output console data

• NanoVMs Corp. wrote these interfaces (and other necessary 
POSIX interfaces) from scratch in C++

• Vast majority of existing C and C++ Applications will link 
successfully with NanoVMs’ OPS Unikernel 

• What Access Does A Modern Cloud Application 
Require?
− A Packet Interface For Network Communications
− A Block Interface For Some Storage
− A Serial Port To Output Console Data

• NanoVMs Team Wrote These Interfaces (And Other 
Necessary POSIX Interfaces) From Scratch In C++

• Vast Majority Of Existing C And C++ Applications Will 
Link Successfully With NanoVMs’ OPS Unikernel

30



Practical Unikernels and Library Operating 
Systems

• MirageOS (Written in OCaml)
• ClickOS (Runs Click NFV language)
• HaLVM (Written in Haskell)
• Ling (Written in Erlang)
• Hermitux – (Written in C++)
• Rusty Hermit – (Written in Rust)
• RumpKernel (NetBSD AnyKernel - Written in C/C++)
• NanoVMs’ OPS (Written in C/C++)

With The last three, you can develop Unikernel Applications in 
Python, Ruby, Node, Java, Rust, Fortran, and more...

Practical Unikernels and Library Operating Systems
MirageOS
RumpKernel
ClickOS (runs Click NFV language)
HaLVM (Haskell)
Hermitux – (Written in C++)
Rusty Hermit – (Written in Rust)
RumpKernel (NetBSD AnyKernel - Written in C/C++)
NanoVMs’ OPS (Written in C/C++)

With The last three, you can develop Unikernel Applications
in Python, Ruby, Node, Java, Rust, Fortran, and more...

31



The good news is that managing our paradigm-shifting unikernels 
does not require any further paradigm shift ;-)
We can manage unikernels using the same tools as containers; 
Kubernetes, Mesos, Swarm, etc., using adapters
These adapters include:
Kubevirt
Virtlet
and RancherVM
CoreOS rkt can natively manage virtual machines, as well as 
containers

VM Unikernel Applications Can Be 
Managed With The Same Tools As 

Containers
● CoreOS ‘rkt’ can run Unikernel VMs with Docker 

Swarm, Kubernetes, or Apache Mesos management 
engines

● Kubernetes:
○ Kubevirt
○ Virtlet
○ RancherVM



Drawbacks
“Every Rose Has Its Thorn”

• Unikernels in LightVMs is a new paradigm
• Lack of experience
• Limited selection of Libraries and Build Tools
• Existing Applications may require modification
• May be more difficult to develop and debug*

* red herring

Drawbacks?
Hardware or hypervisor specific drivers
Existing applications may not run correctly in a shared 

memory model
The development and debug arguments might be relavent 

to how we used to develop software, but with the newer 
practices that have come about because of Containers, 
developing and debugging a Unikernel application is 
actually easier than a container app.

Olivia just sent me an article that seems to imply that we 
can even do remote gdb debugging.

33



Further Resources
● Worried about IoT DDoS? Think Unikernels, Levine, Idit, 4/14/2017 (https://github.com/solo-io/unik/wiki/Worried-about-IoT-DDoS%3F-Think-

Unikernels)

● Enterprise IoT Security and Scalability: How Unikernels can Improve the Status Quo, Duncan, Bob; Happe, Andreas; Bratterud, Alfred; IEEE Xplore, 
3/20/2107 (https://ieeexplore.ieee.org/document/7881647)

● Unikernels + connected devices, Ryd, Thomas, 9/8/2016 (https://mender.io/blog/unikernels-connected-devices

● Unikernels Are Unfit for Production - Bryan Cantril https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-production

● What is a unikernel, and why does it matter?, Hewitt Packard Enterprise, 10/2/2017 (https://www.hpe.com/us/en/insights/articles/what-is-a-
unikernel-and-why-does-it-matter-1710.html)

● Debunking Unikernel Criticisms, Oliver, Kiran; Jackson, Joab, 10/21/2016 (https://thenewstack.io/utilizing-unikernels-within-internet-things/)

● Making operating systems safer and faster with ‘unikernels’, University of Cambridge, 1/28/2016 (https://www.cam.ac.uk/research/news/making-
operating-systems-safer-and-faster-with-unikernels)

● A unikernel experiment: A VM for every URL, Skjegstad, Magnus, 3/25/2015 (http://www.skjegstad.com/blog/2015/03/25/mirageos-vm-per-url-
experiment/)

● Unikernel, Wikipedia, 1/5/2018 (https://en.wikipedia.org/wiki/Unikernel)

● My VM is lighter (and safer) than your container, Manco et al., SOSP’17 (http://cnp.neclab.eu/projects/lightvm/lightvm.pdf)

● Unikernel Monitors: Extending Minimalism Outside of the Box , Williams, Koller, 6/20/2016 (
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_williams.pdf)

● https://github.com/cetic/unikernels – EXCELLENT overview of unikernels, microkernels, monolithic kernels, and containers.  Presents some 
surprising, but limited, benchmarks

Resources

34

https://github.com/solo-io/unik/wiki/Worried-about-IoT-DDoS%3F-Think-Unikernels
http://ieeexplore.ieee.org/document/7881647/
https://mender.io/blog/unikernels-connected-devices
https://mender.io/blog/unikernels-connected-devices
https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-production
https://www.tritondatacenter.com/blog/unikernels-are-unfit-for-production
https://www.hpe.com/us/en/insights/articles/what-is-a-unikernel-and-why-does-it-matter-1710.html
https://thenewstack.io/utilizing-unikernels-within-internet-things/
http://www.cam.ac.uk/research/news/making-operating-systems-safer-and-faster-with-unikernels
http://www.skjegstad.com/blog/2015/03/25/mirageos-vm-per-url-experiment/
https://en.wikipedia.org/wiki/Unikernel
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_williams.pdf
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_williams.pdf
https://github.com/cetic/unikernels


Copies of the Slides May Be Downloaded From

the

Formularity Website

https://formularity.com

Given the security problems of current full operating systems, I truly believe that 
unikernels are a very promising technology to enhanced business 
(microservice) and IoT device security.  Thank you!  Copies of these slides and 
my talking notes on the Formularity website.  Are there any questions?…

Shall we temp the demo gods and try a few demonstrations on how easy 
unikernels can be compiled and run?

35



Backup Slides



Containers vs Unikernels

So, this is what our microservices computing stack looks 
like with unikernels.  We cut out a lot of unnecessary, 
defect-ridden layers, and merge other layers.  We have a 
single executable, with no dependencies, ready to run on 
physical hardware, or under any hypervisor

37



● Virtual Machines Are The “Fuel” Of Cloud Computing
● Multiple “Virtual Machines”, Each With Its Own Operating 

System
● Each Virtual Machine Isolated And Managed By The Virtual 

Machine Monitor Or Hypervisor

Cloud Computing
● Virtual Machines Are The 

“Fuel” Of Cloud Computing
● Multiple “Virtual Machines”, 

Each With Its Own Operating 
System

● Each Virtual Machine Isolated 
And Managed By The Virtual 
Machine Monitor Or 
Hypervisor



● Size - Each VM Requires Its Own Operating System, 
Userland Software, And A Certain Amount Of Dedicated 
Memory, Making VMs BIG:
− VMware – Max Of 380 VMs Per Physical Host
− AWS Xen ~ 10 VMs Per Physical Core
− AWS Nitro – 6000 VMs On A 36 Core Processor  

● Speed - Slow To Startup – Boot Times Measured In Seconds 
And Minutes

Drawbacks to Current Virtual Machines

● Size - Each VM Requires Its Own Operating System, 
Userland Software, And A Certain Amount Of 
Dedicated Memory, Making VMs BIG:
− VMware – Max Of 380 VMs Per Physical Host
− AWS Xen ~ 10 VMs Per Physical Core
− AWS Nitro – 6000 VMs On A 36 Core Processor  

● Speed - Slow To Startup – Boot Times Measured In 
Seconds And Minutes



● A Container Is A Package That Bundles Up An Application 
And All Its Dependent Userland Software (Such As Libraries 
And Services) Into A Single Image 

● A Container Runs Like A Pseudo-Virtual Machine, Weakly 
Isolated From The Host  Processes And Other Containers

● All Containers On A Host Use The Host’s Kernel
● While There Are Several Different Container Formats, 

Docker Is The Most Common

Notice in the diagram how there are two different versions of 
Java running side-by-side!  Dependency isolation is a major 
feature of containers

Containers: Alternate to Virtual Machine
● A Container Is A Package That Bundles Up An 

Application And All Its Dependent Userland 
Software (Such As Libraries And Services) 
Into A Single Image 

● A Container Runs Like A Pseudo-Virtual 
Machine, Weakly Isolated From The Host  
Processes And Other Containers

● All Containers On A Host Use The Host’s 
Kernel

● While There Are Several Different Container 
Formats, Docker Is The Most Common



● Neatly Solves The Library Dependency And Versioning 
Problem (“DLL Hell”) - This is a Windows term, but the 
concept still applies to Linux and other operating systems 
that support dynamic library loading

● Since The Kernel Is Already Running, Containers “Boot” In 
Milliseconds

● Less Dedicated Memory Is Required For A Container Than A 
Conventional VM

● “Orchestration” Software Has Been Developed To Deploy 
And Manage Containers
− Kubernetes, Apache Mesos, Docker Swarm, et al

Advantages of Containers
● Neatly Solves The Library Dependency And Versioning Problem 

(“DLL Hell”)

● Since The Kernel Is Already Running, Containers “Boot” In 
Milliseconds

● Less Dedicated Memory Is Required For A Container Than A 
Conventional VM

● “Orchestration” Software Has Been Developed To Deploy And 
Manage Containers
− Kubernetes, Apache Mesos, Docker Swarm, et al
− Google, Netflix



So, is anybody familiar with Aadhaar?  India has the second largest population in the 
world – approximately 1.1 billion people.  It is also one of the wealthest countries.  
Unfortunately, that wealth is very unevenly distributed.  80% of the population falls below 
the poverty line.  Fortunately, India is very socially responsible and has large social 
programs to help the poorer citizens with food rations, cooking gas, guaranteed 
employment, etc.  However, wherever you  have lots of cash being distributed, you have 
lots of corruption and graft.  Many of the people for whom these programs are intended 
have no “official” identity. No drivers license, no passport, often no fixed address.  These 
people are then easily cheated out of their Government rights.  The Unique Identification 
Authority of India (UIDAI) was founded under the Gandhi/Singh Congress Party 
administration and it continues under the Modi BJP administration.  UIDAI’s Aadhaar 
program voluntarily enrolled over one billion Indians into a biometrically-based 
identification system.  No longer can a corrupt supervisor fail to pay his or her workers.  
These workers can now open bank accounts and have their wages directly deposited, 
with an audit trail.  Likewise, a rice merchant can’t give rice to his or her friends and then 
claim it went to people with ration cards.
As part of Aadhaar, we registered all 10 fingers and both irises of over one billion Indian 
residents.  Actually, collecting and enrolling the biometrics was the easy part.  After we 
collected a set of biometrics, we had to compare the new set with every other set that 
had already been enrolled, to keep people from accidentally or intentionally creating two 
or more identities

Accenture was one of the three original Biometric Service Providers for 
Aadhaar.  We had to process 1 million enrollments per day.  Day One was easy 
– Compare 1 million sets of biometrics against 1 million.  Child’s play. 

42



AADHAAR – “The Last Day”
Comparing 1 Million New Enrollees…

…Against 1 Billion Existing Enrollees

1x106 X 1x109 = 1x1015 

1 Quadrillion Comparisons in a day!

If you are using a database for workflow, that’s:
 

11 Billion Transactions/Second!

(It’s Even More If You Individually Log Each of 10 Fingers, 2 Irises, and a Face)

Now, there is no indexing or hashing system for fingerprints.  The system 
must compare each fingerprint or iris print against every existing print. What a 
database person would call a full table scan.  Now, consider the “last day” of 
Aadhaar – we have to compare our daily 1 million enrollees against the 1 
billion existing enrollees! 1 Quadrillion comparisons or 11 billion transactions 
per second! 

I took over as Acccenture’s Chief Architect on the program when we ran into 
scaling issues.  Initially, we started by using the industry leading biometric 
middleware.  This product uses an Oracle database as its workflow engine.  

When we started processing over 500 thousand biometric enrollments per day, we hit the 
transaction limits of the Oracle system.  And I don’t mean the limits for our particular 
hardware infrastructure, I mean the absolute limits of the Oracle database.  Oracle 
scaled, at the time, using an architecture they call Real Application Clusters.  

43


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	AADHAAR – The Last Day

