

06/20/2025
South East Linux Fest 2025

1

Object Pascal

...It’s Not The Pascal You Learned at University!

Good afternoon and welcome to the South East Linux
Fest!

Before I get started, I’d like to thank the many
volunteers that give their time so we can have the
South East Linux Fest and so that I can have this
chance to tell you about Object Pascal.

 If you had Pascal in high school or college, Object
Pascal is a different beast, but it has a familiar
syntax.

06/20/2025 South East Linux Fest
2025

2

Introduction

● Who is Brad Whitehead?
● Chief Scientist for Formularity, an electronic forms company
● Formerly, he was a Partner and Master Technology Architect with

Accenture
● Has been an Object Pascal developer since 1995
● Brad holds a BS from Carnegie Mellon University and an MS from

the University of Liverpool
● He can be reached at brad.whitehead@formularity.com.
● Slides are available from https://formularity.com

Let me introduce myself. I’m Brad Whitehead and
I’m the Chief Scientist for Formularity, a secure
electronic enrollment company.

Before that I was a Partner and technology architect
with the global consulting firm of Accenture.

I’ve been using Pascal since 1975 and Object Pascal
since it originated in 1995

The slides for today’s talk will be available for
download from my company’s website:
Formularity.com, so no need to take pictures or
notes. If you do want to take pictures, this is my
better side ;-)

mailto:brad.whitehead@formularity.com

06/20/2025 South East Linux Fest
2025

3

History

● Pascal was originally developed by Niklaus Wirth in 1970, based
on Algol-W and Simula 67 (same inspiration for C++)

● It was not object oriented
● Extremely popular in the 80’s and 90’s with Turbo-Pascal (Anders

Hejlsberg) and Macintosh Pascal Workbench (MPW)
● Anders later wrote both Delphi and C#

● Object orientation added by Apple (MPW) and Borland (Delphi)
● Free Pascal Compiler and Lazarus GUI IDE released in 1997
● There are now at least eight (8) multi-platform implementations

Pascal is the product of Niklaus Wirth, written in
1970. He based it on both Algol and Simula. While
Simula was also the inspiration for “C with
Classes”, the language now known as C++, the
original Pascal was not object or class-oriented.

06/20/2025 South East Linux Fest
2025

4

History

● Pascal was originally developed by Niklaus Wirth in 1970, based
on Algol-W and Simula 67 (same inspiration for C++)

● It was not object oriented
● Extremely popular in the 80’s and 90’s with Turbo-Pascal (Anders

Hejlsberg) and Macintosh Pascal Workbench (MPW)
● Anders later wrote both Delphi and C#

● Object orientation added by Apple (MPW) and Borland (Delphi)
● Free Pascal Compiler and Lazarus GUI IDE released in 1997
● There are now at least eight (8) multi-platform implementations

While Wirth wrote Pascal as a teching language, it
became very popular during the 1980s and ‘90s.
The original Macintosh was programmed in Pascal.

Probably the most famous instance of Pascal was
Borland’s TurboPascal. At the time that most PC
compilers cost $200 or more, Borland’s
TurboPascal cost $39.95 and as the name
suggests, it was very fast!

Interesting enough, TurboPascal was written by
Anders Hejlsberg, who later went to Microsoft and
wrote C#.

06/20/2025 South East Linux Fest
2025

5

History

● Pascal was originally developed by Niklaus Wirth in 1970, based
on Algol-W and Simula 67 (same inspiration for C++)

● It was not object oriented
● Extremely popular in the 80’s and 90’s with Turbo-Pascal (Anders

Hejlsberg) and Macintosh Pascal Workbench (MPW)
● Anders later wrote both Delphi and C#

● Object orientation added by Apple (MPW) and Borland (Delphi)
● Free Pascal Compiler and Lazarus GUI IDE released in 1997
● There are now at least eight (8) multi-platform implementations

In 1995, Apple and Borland collaborated to develop
the object-oriented version of Pascal. Apple
released their product as the Macintosh
Programming Workbench, and Borland’s product
was called Delphi.

06/20/2025 South East Linux Fest
2025

6

History

● Pascal was originally developed by Niklaus Wirth in 1970, based
on Algol-W and Simula 67 (same inspiration for C++)

● It was not object oriented
● Extremely popular in the 80’s and 90’s with Turbo-Pascal (Anders

Hejlsberg) and Macintosh Pascal Workbench (MPW)
● Anders later wrote both Delphi and C#

● Object orientation added by Apple (MPW) and Borland (Delphi)
● Free Pascal Compiler and Lazarus GUI IDE released in 1997
● There are now at least eight (8) multi-platform implementations

One of the problems with Delphi was that it only ran
on Windows. In 1997, the open source community
wrote a cross platform version of Object Pascal
called appropriately enough, the Free Pascal
Compiler.

06/20/2025 South East Linux Fest
2025

7

History

● Pascal was originally developed by Niklaus Wirth in 1970, based
on Algol-W and Simula 67 (same inspiration for C++)

● It was not object oriented
● Extremely popular in the 80’s and 90’s with Turbo-Pascal (Anders

Hejlsberg) and Macintosh Pascal Workbench (MPW)
● Anders later wrote both Delphi and C#

● Object orientation added by Apple (MPW) and Borland (Delphi)
● Free Pascal Compiler and Lazarus GUI IDE released in 1997
● There are now at least eight (8) multi-platform implementations

The last time I checked, there were at least 8 cross-
platform Object Pascal implementations, a mixture
of both Free and Open Source software and closed
source software.

06/20/2025 South East Linux Fest
2025

8

● Strong Typing – Prevents unintentional conversions, memory
errors, and spelling errors

● Separate Interface and Implementation Sections – One set of
Developers can code for a Unit/Library that is still being written

● Memory Safety – Object memory is reclaimed after it passes out
of scope (no question of who frees memory) and all types can be
set to Nil, avoiding “use after free” errors

● Compiles to machine code – executes as fast as C
● Syntax is very similar to Python
● “System” language with embeddable assembler

Why Should You Care?

So, what does Object Pascal have to offer?
First off, Strong Typing. What this may seem like

extra work, strong typing actually helps prevent
conversion errors, memory errors, and typing
errors. And, Pascal’s type system isn’t as annoying
as Java’s or C++’s.

06/20/2025 South East Linux Fest
2025

9

● Strong Typing – Prevents unintentional conversions, memory
errors, and spelling errors

● Separate Interface and Implementation Sections – One set of
Developers can code for a Unit/Library that is still being written

● Memory Safety – Object memory is reclaimed after it passes out
of scope (no question of who frees memory) and all types can be
set to Nil, avoiding “use after free” errors

● Compiles to machine code – executes as fast as C
● Syntax is very similar to Python
● “System” language with embeddable assembler

Why Should You Care?

Pascal programs are written in two parts, the
interface section and the implementation section.
The interface section corresponds to the export
statements of some other languages. It also
means that you can give the interface section to
other developers and they can write code without
waiting for you to finish the implementation. It also
helps hide the “What” from the “How”.

06/20/2025 South East Linux Fest
2025

10

● Strong Typing – Prevents unintentional conversions, memory
errors, and spelling errors

● Separate Interface and Implementation Sections – One set of
Developers can code for a Unit/Library that is still being written

● Memory Safety – Object memory is reclaimed after it passes out
of scope (no question of who frees memory) and all types can be
set to Nil, avoiding “use after free” errors

● Compiles to machine code – executes as fast as C
● Syntax is very similar to Python
● “System” language with embeddable assembler

Why Should You Care?

One of the hot topics today is the Rust language and
its memory safety. Memory management in C and
C++ is like juggling razor blades. One slight slipup
and … you leak memory or you have a “use after
free” vulnerability.

Object Pascal uses both reference counting and null
pointer detection to avoid memory errors. So, it’s
memory safety with a familiar syntax, unlike Rust.

06/20/2025 South East Linux Fest
2025

11

● Strong Typing – Prevents unintentional conversions, memory
errors, and spelling errors

● Separate Interface and Implementation Sections – One set of
Developers can code for a Unit/Library that is still being written

● Memory Safety – Object memory is reclaimed after it passes out
of scope (no question of who frees memory) and all types can be
set to Nil, avoiding “use after free” errors

● Compiles to machine code – executes as fast as C
● Syntax is very similar to Python
● “System” language with embeddable assembler

Why Should You Care?

The Free Pascal Compiler, as well as most other
implementations are true compilers, generating the
native machine code of the platform. So, no byte-
code virtual machines, and full C-like speeds

06/20/2025 South East Linux Fest
2025

12

● Strong Typing – Prevents unintentional conversions, memory
errors, and spelling errors

● Separate Interface and Implementation Sections – One set of
Developers can code for a Unit/Library that is still being written

● Memory Safety – Object memory is reclaimed after it passes out
of scope (no question of who frees memory) and all types can be
set to Nil, avoiding “use after free” errors

● Compiles to machine code – executes as fast as C
● Syntax is very similar to Python
● “System” language with embeddable assembler

Why Should You Care?

How many Python programmers do we have here
today? One of the things you’ll notice when I show
you some Object Pascal code later is the similarity
to Python code. It’s very easy for a Python
programmer to pick up Object Pascal and use its
benefits of speed and true multi-threading. No
Global Interpreter Locks!

06/20/2025 South East Linux Fest
2025

13

● Strong Typing – Prevents unintentional conversions, memory
errors, and spelling errors

● Separate Interface and Implementation Sections – One set of
Developers can code for a Unit/Library that is still being written

● Memory Safety – Object memory is reclaimed after it passes out
of scope (no question of who frees memory) and all types can be
set to Nil, avoiding “use after free” errors

● Compiles to machine code – executes as fast as C
● Syntax is very similar to Python
● “System” language with embeddable assembler

Why Should You Care?

As I noted, Pascal was used as the system
programming language for the original MacOS.
Object Pascal can and is used to write operating
system code. If you can’t do it in Pascal, it
supports dropping down into an integrated
assembler.

06/20/2025 South East Linux Fest
2025

14

Available Compilers
● Free Pascal Compiler (FPC) – FOSS (with Lazarus GUI

Designer/IDE
● Code Typhon Studio - FOSS
● Delphi – Embarcadero – Commercial – Full Featured Community

Edition Available
● PAS2JS – FOSS – Compiles to Javascript/ES5/ES6 code
● Elevate Web Builder – Commercial
● GNU Pascal Compiler (GPC) – FOSS
● Oxygene – Commercial
● PascalABC.Net - FOSS
●

Here are some of the eight implementations of Object
Pascal I’m familiar with. As you can see, over half
are open source.

While the Delphi implementation isn’t open source,
they do have a free full-featured, time-unlimited
Community Edition. Basically, you can use this
Community Edition and sell the resulting software
until you have annual sales of $5000. This is of
interest because while the Free Pascal Compiler
can cross compile to both Android and IOS, the
Delphi version is much easier to use for cross-
compilation.

06/20/2025 South East Linux Fest
2025

15

Interpreters

● https://www.onlinegdb.com/online_pascal_compiler - Online
● https://www.tutorialspoint.com/compilers/online-pascal-

compiler.htm - Online
● https://onecompiler.com/pascal - Online
● https://www.startpage.com/sp/search – Online
● DWScript - FOSS

There are also Object Pascal interpreters. The first 4
on this list are online development environments.
The last is an interpreted version designed to be
embedded in a Pascal program as a scripting
language. No need use a different language like
Lua for scripting. ;-)

06/20/2025 South East Linux Fest
2025

16

Platforms

● AMD64/x86_64
● i386
● PowerPC
● PowerPC64
● SPARC
● SPARC64
● ARM
● AArch64

● MIPS, Motorola 68k
● AVR
● JVM
● RISC-V
● Extensa
● Z80
● ESP32

Here are some of the hardware platforms that Object
Pascal runs on.

06/20/2025 South East Linux Fest
2025

17

Operating Systems
● LINUX
● MacOS/iOS/Darwin
● FreeBSD and other BSD

flavors
● Web Assembly (WASM)
● Windows (16/32/64 bit, CE,

and native NT)
● DOS (16 bit, or 32 bit DPMI),

OS/2
● AIX/VAX/HP-PA/zOS

● Android
● Raspian
● Haiku
● Nintendo GBA/DS/Wii/Switch
● AmigaOS
● MorphOS
● AROS
● Atari TOS
● various embedded platforms

And here are the operating systems.

06/20/2025 South East Linux Fest
2025

18

Rich Flow Control

● IF – THEN - ELSE
● CASE – OF – ELSE (no “fall through”)
● FOR - DO
● WHILE – DO
● REPEAT – UNTIL
● FOR <Object> IN <Iteratable Object> (Arrays, Lists, Collections,

Sets, Enumerations)
● Exception – Try – Except - Finally

Object Pascal has a rich set of flow controls.

06/20/2025 South East Linux Fest
2025

19

Rich Flow Control

● IF – THEN - ELSE
● CASE – OF – ELSE (no “fall through”)
● FOR - DO
● WHILE – DO
● REPEAT – UNTIL
● FOR <Object> IN <Iteratable Object> (Arrays, Lists, Collections,

Sets, Enumerations)
● Exception – Try – Except - Finally

Of particular note, the Case statement automatically
does not fall through to subsequent cases, this
eliminates a common error with some switch
statements. It also has a “catch-all” Else condition.

06/20/2025 South East Linux Fest
2025

20

Rich Flow Control

● IF – THEN - ELSE
● CASE – OF – ELSE (no “fall through”)
● FOR - DO
● WHILE – DO
● REPEAT – UNTIL
● FOR <Object> IN <Iteratable Object> (Arrays, Lists, Collections,

Sets, Enumerations)
● Exception – Try – Except - Finally

Pascal has fixed iteration looping

06/20/2025 South East Linux Fest
2025

21

Rich Flow Control

● IF – THEN - ELSE
● CASE – OF – ELSE (no “fall through”)
● FOR - DO
● WHILE – DO
● REPEAT – UNTIL
● FOR <Object> IN <Iteratable Object> (Arrays, Lists, Collections,

Sets, Enumerations)
● Exception – Try – Except - Finally

Conditional looping at the start of the loop

06/20/2025 South East Linux Fest
2025

22

Rich Flow Control

● IF – THEN - ELSE
● CASE – OF – ELSE (no “fall through”)
● FOR - DO
● WHILE – DO
● REPEAT – UNTIL
● FOR <Object> IN <Iteratable Object> (Arrays, Lists, Collections,

Sets, Enumerations)
● Exception – Try – Except - Finally

And conditional looping at the end of the loop

06/20/2025 South East Linux Fest
2025

23

Rich Flow Control

● IF – THEN - ELSE
● CASE – OF – ELSE (no “fall through”)
● FOR - DO
● WHILE – DO
● REPEAT – UNTIL
● FOR <Object> IN <Iteratable Object> (Arrays, Lists, Collections,

Sets, Enumerations)
● Exception – Try – Except - Finally

Object Pascal data structures are iterable and can be
used with a For-In statement.

06/20/2025 South East Linux Fest
2025

24

Rich Flow Control

● IF – THEN - ELSE
● CASE – OF – ELSE (no “fall through”)
● FOR - DO
● WHILE – DO
● REPEAT – UNTIL
● FOR <Object> IN <Iteratable Object> (Arrays, Lists, Collections,

Sets, Enumerations)
● Exception – Try – Except - Finally

Finally (and the pun is intended), Object Pascal uses
exceptions for error handling and it has a Finally
clause that is guaranteed to be executed. This is
where you can close files and databases safely,
even if your program crashes.

06/20/2025 South East Linux Fest
2025

25

Primitive and Structured Data Types
● Integer, Word, and LongInt,
● Real, Single, Double,

Extended (Exponential),
Currency, and 80-bit Real

● Char, WideChar, ShortString,
WideString, and ANSIString

● Boolean

● Static Array and DynamicArray
● Records
● Sets
● Dictionary
● List, and ClassList
● Pointers
● Variants
● Enumerations and SubRange
● Objects and Classes

Pascal has two types of data; the basic data
structures with the usual various string and numeric
types, as well as boolean.

06/20/2025 South East Linux Fest
2025

26

Primitive and Structured Data Types
● Integer, Word, and LongInt,
● Real, Single, Double,

Extended (Exponential),
Currency, and 80-bit Real

● Char, WideChar, ShortString,
WideString, and ANSIString

● Boolean

● Static Array and DynamicArray
● Records
● Sets
● Dictionary
● List, and ClassList
● Pointers
● Variants
● Enumerations and SubRange
● Objects and Classes

It also has a rich set of collective data types

06/20/2025 South East Linux Fest
2025

27

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

The heart of Object Pascal is Classes. Here is an
example of a Class in Object Pascal. In the
religious war of multiple versus single inheritance,
Pascal comes down on the side of single
inheritance Here we are defining the Wall type and
saying that it is derived from the TObject class.
TObject is the most fundamental base class.

06/20/2025 South East Linux Fest
2025

28

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

Pascal Classes have three types of data access
restrictions. Anything under Private can only be
accessed the Class itself. It’s “hidden” from the
rest of the program.

06/20/2025 South East Linux Fest
2025

29

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

Here we have two data fields. The first is an array of
Beers objects. Pascal arrays can hold any type of
data. The second field is an integer. Both of these
are under Private so they can only be read or
written to by the Object itself.

06/20/2025 South East Linux Fest
2025

30

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

The Public access control is just that. Anything under
 Public can be read, written, or called by any other
part of the program.

06/20/2025 South East Linux Fest
2025

31

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers: integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

Here’s a public Function that tells us how many
bottles of beer are on the wall. It returns an integer,
the number of beers.

06/20/2025 South East Linux Fest
2025

32

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

This is a Procedure. Functions and Procedures are
virtually identical, but Procedures do not return
anything. Here we are talking about a public
procedure that can remove X number of beers from
the Wall at a time.

06/20/2025 South East Linux Fest
2025

33

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

Every Class has a constructor. This is a special
procedure that’s called when the Class is
instantiated into an Object. It’s responsible for
setting all the initial conditions of the Object.

06/20/2025 South East Linux Fest
2025

34

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

Here’s the Protected access designator. Items under
Protected can only be read, written, or called by a
child Class derived from this parent Class.

06/20/2025 South East Linux Fest
2025

35

Class/Object Notation

● Class TWall = Class(TObject); – Single Inheritance
● Private

● FBeers : array of Tbeer;
● FnumberOfBeers : Integer;

● Public
● Function TellCount(): integer;
● Procedure RemoveBeer(NoOfBeers : integer);
● Constructor Create(NoOfBottles : integer);

● Protected (Accessible Only to Derived Classes)
● Property NumberOfBeers : Integer Read FNumberOfBeers Write

TellCount();

Finally, Pascal Classes can have Properties.
Properties are what’s called “syntactic sugar”. It’s a
short-hand way of making a Function or Procedure
look like a Field. There can be a Function for
Reading, or a Procedure for Writing to a Private
Field. You can see, in this particular case, reading
reads the private field directly, while writing uses
the TellCount function.

06/20/2025 South East Linux Fest
2025

36

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

Some other important features of Object Pascal:
Objects can simulate multiple inheritance through

Interfaces. These Interfaces can conform to either
Microsoft’s Common Object Model (COM) interface
or the old Common Object Request-Broker
Architecture (CORBA).

06/20/2025 South East Linux Fest
2025

37

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

Pascal code can call into C functions or be called by
C functions. When Name Mangling is turned off in
C++, the same execution exchange is possible. So,
you can use C and C++ libraries and Pascal
libraries can be used by C and C++ programs.

06/20/2025 South East Linux Fest
2025

38

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

I already covered Object Pascal’s exceptions for error
handling

06/20/2025 South East Linux Fest
2025

39

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

For the most part, Pascal methods are concrete and
therefore very fast. However, if runtime
polymorphism is required, the methods can be
called through a Virtual Method Table.

06/20/2025 South East Linux Fest
2025

40

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

I’m not a big fan of Generics, but if you want create
collective data types through templates, Object
Pascal has Generics for your use.

06/20/2025 South East Linux Fest
2025

41

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

Object Pascal methods can be nested to any depth
and you can define a method without associating a
name with it. Again, I’m not sure that is as
important to Pascal as it is to say Javascript.

06/20/2025 South East Linux Fest
2025

42

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

Object Pascal has pointers to memory and to
methods. The only thing it doesn’t permit is pointer
arithmetic. This is to prevent memory access
vulnerabilities.

06/20/2025 South East Linux Fest
2025

43

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

Class Helpers are methods that can be added to an
existing Class without having to have access to the
original source code of the Class. Basically, extend
an existing class you didn’t write.

06/20/2025 South East Linux Fest
2025

44

Other Features
● Interfaces (COM and CORBA)
● Direct calls to and from C and C++ (without name-mangling)
● Exceptions for error handling, including ‘Finally’
● Concrete and Virtual Methods (VMT)
● Generics
● Nested and Anonymous Functions
● Pointers (including callbacks)
● Class Helpers
● Case Insensitive

Finally, Object Pascal is case insensitive. Some
people might consider that a negative, but I strive to
write error-free code. Having the same variables or
methods differentiated only by the shift key seems
to me like an error waiting to happen.

06/20/2025 South East Linux Fest
2025

45

Learning References

● “Modern Object Pascal – Introduction for Programmers” (castle-
engine.io/modern_pascal)

● Free Pascal Wiki (https://wiki.freepascal.org)
● Tech & Swords Youtube videos – Marcus Fernstrom

Here are three excellent sources for learning Object
Pascal. I highlighted the first because it’s written
for existing programmers that want to know how to
use Object Pascal and don’t need “this is what a
variable is” type lesson.

https://wiki.freepascal.org/

06/20/2025 South East Linux Fest
2025

46

Demo Time!

● “99 Bottles of Beer on the Wall”
● Object-oriented
● Audio “Singing”
● Linux
● Windows
● Mac
● Android
● ...all with the same code base

OK, time for our demo section.
I wanted to use something other than the usual “Hello

World!” program, because, frankly, that only shows
a simple I/O function. So I picked the “99 Bottles of
Beer on the Wall” example program. Again, you
can do this procedurally with about 6 lines of
Pascal code. But I wanted to demonstrate Object
Pascal’s object-orientation. So I created a Beer
Class, a Wall Class, and a Person Class.

Then to add to the demo, I incorporated the open
source Text-To-Speech program ‘espeak-ng’. So
we’ll be able to hear the program sing the song.

If time permits, I’ll show this same Object Pascal
program running on Linux, Windows, Mac, and
Android, using the same code.

Free Pascal Compiler’s Lazarus IDE

I had intended on showing all the code live, but then
realized it was, for the most part, too small. So I’ll
introduce you to the IDE and the code through
screen shot slides.

Here is the IDE. It appears somewhat complex, it’s
pretty simple.

List of Widgets in the Form

Here is a list of all the widgets we’ll use on our Form.
The form is our graphical display screen

Properties of Each Widget

When you click on a widget in the list, you can set
various compile time attributes, such as color,
caption, contents, etc.

Code Editing Window (w/IntelliSense and Breakpoints)

Here's the some editor. It has IntelliSense, showing
you possible choices and method signatures. This
is also where you can set breakpoints for the
debugger.

Compiler and Build Message Area

Here are where messages from the compilation and
build are displayed. We hope for the green
“Successful” message! :-)

Available Widgets Library

This is the palette of all the widgets that can be
dragged onto the Form.

Standard Editing and Project Options Menus

Finally, here are the menus for normal editing
functions and project options.

Free Pascal Compiler’s Lazarus Form Designer

Here’s our “99 Bottles of Beer” user interface Form

Button Widgets with Caption Property Set

I’ve dragged out three buttons and set their captions.

A Progress Bar Widget (This is Our “Wall”)

This is a progress bar and it represents our wall of
beer. As we add beers to the wall, it will fill up and
then empty as we remove bottles.

Text Label Widget (Invisible Because the Caption Property is Not Set)

You can’t see it because I removed the Caption, but
this area has a text label. This is where we’ll print
out the verses of the song as we go along.

“Process” Widget – For Calling External Programs

This little widget here is a Tprocess Object. It lets us
run an external program, which in our case is the
voice synthesizer.

Our Window Caption

Finally, we have our Caption for the Window.

Four Classes in Our Program

Switching back to code, here are our four Classes...

Form Class Definition

The first Class is our Form. You can see it has the
three Button type objects, the Label, the Progress
Bar, and that Process widget. It also has 4
procedures. The first three are called in response
to Button push events. The last one is a pseudo-
constructor that sets the parameters of the
Progress Bar.

“Beer” Class Definition

Now, here’s our Beer Class. It just exists. It doesn’t
have any data nor does it have any methods other
than the mandatory constructor.

“Wall” Class Definition

Here’s the Wall Class. It has an unsized array of
Beer objects. It has an integer field where it keeps
track of the current number of beers available on
the wall. It has one Function, where it 1) prints out
the current lyric of the song, and 2) it returns the
number of beers remaining. Finally, it has a
constructor that sets the size of the array, based on
our global constant of the number of beers.

“Person” Class Definition

Here’s the Person Class. It doesn’t have any data,
but it has two Procedures that 1) load X number of
Beers into the Wall’s array, and 2) decreases the
number of Beers by one and asks the Wall to tell us
how many bottles on beer remain on the wall.

Instantiating Classes into Actual Objects

OK, Classes are templates from which Objects are
constructed. Here we declare four variables that
will hold an instance of each of our four Classes.

Example Procedures from Person Object

To show you a sample of the code flow, here the
Person’s PassItAround procedure.

OK, let’s switch over to the live IDE running on Pop!
OS Linux and compile and run our program!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

