
Super Containers:
Unikernels and Virtual Machines

14th Annual IEEE/ACM IT Professional Conference at TCF
(2019)

Brad Whitehead, Chief Scientist – Formularity

March 22, 2019
Good afternoon. I’m Brad Whitehead. I’m the Chief Scientist at Formularity.

Before I get started, I’d like to thank the folks of the IEEE and the ACM for
giving me the opportunity to talk to you today at ITPC 2019. In particular, I’d
like to thank David Sol and Al Katz. They have selected an excellent agenda of
both interesting and educational presentations. But most importantly, I’d like to
thank you for choosing to attend this talk. I hope I make it worth your while!

1

Who is Brad Whitehead ?!?!

• Former Partner and Master Technology Architect with Accenture
• National Scale Biometric Identification and Border Management Systems

• US VISIT
• DHS Transportation Worker’s Identification Card (TWIC)
• TSA PreCheck
• Republic of India’s Aadhaar Program

• Presently Co-Founder and Chief Scientist of Formularity
• Secure Electronic Enrollment Forms for the Government, Healthcare, Finance, and Legal Industries
• We Offer a Hosted Solution, in Addition to Our Primary, On-Premise Products
• We Take the Security of Our Client’s Information VERY Seriously
• We Constantly Investigate and Explore New Advances in Information Security and Assurance

Formularity is a small company and you may not be familiar with us. We develop
high security electronic enrollment forms for things like national identity
management programs, financial institutions, and national health care program
enrollments. We are dedicated to making sure the sensitive personal
information you provide on our forms is secure and protected at all times. In
addition to our forms being run by our clients in their own data centers, we also
offer a hosted solution. Since we are potentially storing valuable, sensitive
personal information of our clients’ customers, we are extremely concerned
about security! We take a number of steps to ensure information remains
encrypted; while at rest, while in motion, and especially in between ;-) We are
constantly reviewing not only the threats, but new technologies that can help
mitigate these threats. I’m here today to discuss one of these promising new
technologies. Unlike typical security measures that impose additional
complexity and require additional resources, unikernels are unique in that they
significantly simplify the software and operations, and they reduce resource
requirements. To be clear, Formularity is not yet using unikernels in production,
but we are experimenting with them and anticipate their use in the future.

2

Super Containers - That’s not their real name, but what else
would you call a container that’s:

● 1400 Times More Secure Than A Well-configured Docker
Container

● Boots 37 Times Faster Than That Docker Container
● Can Run 10 Times More Microservices On The Same

Physical Hardware
● Can Be Managed By Kubernetes Or Apache Mesos

“Super Container”

● 1400 Times More Secure Than A Well-configured
Docker Container

● Boots 37 Times Faster Than That Docker Container

● Can Run 10 Times More Microservices On The Same
Physical Hardware

● Can Be Managed By Kubernetes Or Apache Mesos

What Is This Incredible New Technology?
It’s A Unikernel Image Running On A Lightweight Virtual Machine
Hypervisor

What Is This Incredible New Technology?

It’s A Unikernel Image Running On A Lightweight
Virtual Machine Hypervisor

To answer this, let’s take a look at a modern operating system
Doesn’t matter if we choose Windows, Linux, UNIX, or whatever
Apple’s calling their desktop operating system these days!
They are all basically the same

What’s A Unikernel?

● To Answer That Question, We Have To Take A Look At
The Structure Of A Modern Operating System

● Doesn’t Matter If It’s Microsoft Windows, Linux, UNIX,
Mac OS X OS X macOS, etc.

● All The Mainstream Operating Systems Have The
Same Fundamental Anatomy

The Anatomy of An Operating System

“UserLand”

• Where Applications
Run

• No Privileges
• Can Not Access

Resources
• Can Not “Talk” to

Other Programs

“The Kernel”
• Runs in Special

Hardware Mode –
“Ring 0”

• Only Program That
Can Access or
Allocate Resources

• Copies Data
Between Programs

Anatomy of an Operating System
User Interface (CLI or GUI)
Standard set of tools and applications (“Userland”)
Kernel (privileged, separated from Userland by hardware)
Monolithic (Linux even includes a web server in the kernel!)
Famous flame war between Torvald Linus and Dr. Andrew Tanenbaum, 1992 Usenet
Microkernel (Mach, Minix)
Context switches
data copying

6

Operating system kernels have grown enormously over time!
Linux 22 million SLOC
Windows estimated to be 50 million SLOC
Now, Steve McConnell has conducted a number of studies on
the defect rates in modern system software. He estimates that
there are between 15 and 50 defects per 1000 lines of code!
Now not all defects result in errors. A defect is anything that
does not meet the requirements or is not as intended by the
developer. So a defect could be as simple as a misspelled word
in an error message. Or as serious as a buffer overrun or a “use
after free” pointer error!
Using McConnell’s figures, the Linux kernel - just the kernel - has
330,000 to 1.1 million defects
Windows has 750,000 to 2.5 million defects

Growth of Operating Systems
● Linux Kernel Is Now 22 Million Lines Of Code!

● Windows Is Estimated At 50 Million Lines Of Code!

● With An Industry Average Of 15-50 Defects Per 1000
Lines Of Code*:
− Linux(Just The Kernel) = 330,000 To 1.1 Million

Defects
− Windows = 750,000 To 2.5 Million Defects

*(Steve McConnell, “Code Complete 2”, 2005)

That was just the kernel. The kernel needs support software to
boot and to perform standard services. This support software,
along with all the other applications that come with an operating
system distribution, is that userland I referred to a moment ago.
Red Hat Enterprise Linux is the leader in Linux software for
businesses. Their userland software is around 420 million lines
of code. Again, taking McConnell’s numbers, each of your your
bank servers could have 6.3 to 21 million defects running!

It Gets Worse!
● The “Userland” Support Software Is Often 10 To 20

Times Larger Than The Kernel!

● Red Hat Enterprise Linux (RHEL) Userland Is
Approximately 420 Million Lines Of Code

− Try Not To Think About The 6.3 To 21 Million
Defects Running On Your Bank’s Server!

Why is the kernel so big!?!? For one thing, a large number of
device drivers are routinely compiled into the kernel. That way,
whether you load the operating system on an IBM server or a
SuperMicro, it just works - magic! There are device drivers in the
kernel for hardware that no longer exists. Amazon’s standard
Linux image had floppy disk and audio card drivers compiled into
it. How many floppy drives are there in an Amazon data center?
Who uses those audio cards? I hope Amazon has gone back
and recompiled their kernel images, because in 2015, the Venom
malware used a defect in the floppy disk driver to compromise
both the VM in which it was running, as well as the physical host.
 How many other device driver defects are out there, waiting to
be exploited?

Can It Get Even Worse?!?!
● The Kernel Is Full Of Junk!

● A Large Number Of Device Drivers Are Routinely
Compiled Into The Kernel, Regardless Of The Actual
Hardware In The Computer

− There Are Device Drivers For Hardware That No Longer
Exists

− Amazon Ami Images Have Drivers For Floppy Disks
And Audio Cards
● In 2015, The Venom Vulnerability (CVE-2015-3456) Used A

Flaw In The Floppy Disk Controller (FDC) Driver To
Compromise Both Physical And Virtual Machines

It’s not just device drivers. There are a large number of file
system drivers and communications protocols compiled into the
kernel. Many, most, of these are esoteric and probably won’t be
needed by your applications. But they are still sitting there,
taking up space, processing power, and the reliability budget

Can It Get Even Worse?!?! (Continued)
● Likewise, There Are Thousands Of Storage And

Communications Protocols In The Kernel That Will Not
Be Used In Your Application

● Linux Recognizes 7 Different Executable Formats,
Even Though The Vast Majority Of Applications
(Including Yours) Are In ELF Format

● Each Of These Extra, Unused Chunks Of Code
(With Its 15-50 Defects/1000 Sloc) Is A Potential
Hack Waiting To Happen!

What If We Cut Out All The Parts We
Don’t Need?

● Code Traces Show That The Average Application
Uses Less Than 0.08% Of The Total Code In The
Kernel!

● Take The Standard C Library As An Example
○ The C Library Contains Thousands Of Functions,

But A Modern Linker Only Includes The Actual
Functions (And Code) That An Application Uses

● Could We Do The Same With Our Operating
System?

When you code trace an average application, you find that
it only uses 0.08% of the code in the kernel! Wouldn’t it be
great if we could jettison the extra 99.92% of the kernel we
don’t need?
Most of our modern libraries and linkers do this type of
jettisoning. The C library has thousands of functions, but
when it’s linked into an executable, only the functions that
are actually used are linked into the code.
Wouldn’t it be great if our kernel only contained the
functions we needed?

11

Microservices and IoT
What Do We Need?

• Run A Single Application

• As A Single User
• Known Set Of Hardware Drivers
• 1 Or 2 Communications Protocols

• Speed (Startup And Latency)
• Reliability
• Security (From Unauthorized Access - “Hacking”)

• Repeatability (Multiple Identical Servers)

So what are the functions we need?
Let’s make up a list. Let’s assume our application is a

microservice or perhaps a Internet of Things application
• Run A Single Application
• As A Single User
• Known Set Of Hardware Drivers
• 1 Or 2 Communications Protocols
• Speed (Startup And Latency)
• Reliability
• Security (From Unauthorized Access - “Hacking”)
• Repeatability (Multiple Identical Servers)

12

Keeping Only The Parts of the Operating
System We Actual Use

• What Does It Buy Us?:

○ Let’s Start With Security:

● Greatly Reduced Attack Surface (99.92% Reduction)

● Potentially A Small Enough Subset To Be Mathematically
Verifiable

● We Don’t Need Any Userland Applications (Bye-bye 410
Million Lines Of Potentially Flawed Code!)

● No Ability To Run Malicious Or Hacking Tools On Our Server
Or IoT Device

So, when we strip away 99.92% of the kernel code, what do we get?
Well, first - Security
Reduced attack surface – .08% of typical
Small enough to possibly be mathematically verified
No tools (no shell, etc.)

13

More Benefits
We Can Statically Link Everything (Including The Kernel
Functions) And Our Software Becomes Immutable

● No Injection Attacks
● No Re-configuration Attacks
● Vastly Reduced “Return Oriented Programming”

(ROP) Vulnerability

Increased Reliability And Improved Security Means
Reduced Devops Costs!

We can statically link everything together
At that point, our code becomes immutable
Modules and dynamic libraries can’t be added, code can’t be injected

14

Increased Performance
• Smaller, Less Memory Intensive Images Mean More Virtual

Machines Per Hardware Server
• 5 Megabyte Virtual Machines = 10,000 VMs Per Physical

Server
• Smaller Than Most Docker Containers

• 6 Millisecond Boot Times
• Jitsu – Boot-On-Demand

• 45 Microsecond Throughput Times
• No Context Switches
• No Information Copying
• Single Address Space

We also get huge performance gains!
Smaller instances or more VMs per instance - 5MB per VM, 10K VMs/hardware server
6 millisecond boot
Since all the code is running in Ring 0 as privileged code, there are no context switches

and no need to copy memory between kernel and applications
Server-less Functions (with servers)! – 45 microsecond response
Jitsu

15

How To Include Only The Needed Code?

● Again, The C Library Analogy Is The Key
○ The C Library Is Actually A “Middle Ware Layer”
○ It Converts Standard C Function Calls Into

Equivalent Kernel System Calls
○ Instead of Handing The Function Call Off As a

System Call, What If We Extended the C Library to
Include the Appropriate Kernel Code?
■ Instead of the C Library Passing a “Printf()” Call To

The Kernel, the Library Can Include the Machine
Instructions to Do The Actual I/O

How do we include only the required kernel code?
Again, let’s look at the the C Library. The C Library presents a standard POSIX interface

to the application’s C code.
When a function in the library is called, the library prepares all the parameters and then

executes specific operating system calls.
Why don’t we combine the C library and the kernel code it calls? Then, when we link in

the C library code, we get both the POSIX interface code and the underlying kernel
functionality

16

The “Library Operating System”

• Common Operating System Functions, Drivers, And
Protocols Are Written As A Library Of Functions

• When You Link These “Library Operating System”
Functions To Your Application, You Have A Single
Executable That Runs Directly On Hardware Or A
Hypervisor…

…You Have A Unikernel!

This approach is called, obviously enough, a “library
operating system”
• Common Operating System Functions, Drivers, And

Protocols Are Written As A Library Of Functions
• When You Link These “Library Operating System”

Functions To Your Application, You Have A Single
Executable That Runs Directly On Hardware Or A
Hypervisor…

• in other words, you have a Unikernel!

17

What Does A Unikernel Look Like??

Unikernel
Compiler

OS
Functions

“Ring
0”

“Ring
3”

“Ring
0”

Visually, this is what a unikernel looks
like:
On the left, you have the conventional
software stack. The bottom four layers
are operating system code. They run in
Ring 0 and can access the hardware
directly. The top three layers are
userland and application code. They
are unprivledged and run in Ring 3.
On the right hand side is our unikernel.
The unikernel compiler has extracted
only the operating system functionality
we need and combined it with our
application code. For the most part, we
don’t need any userland code. Our new
unikernel runs in Ring 0

18

Unikernels Are Only Half The Answer To Small, Fast, Secure
Containers
The Other Half Are Lighter Weight Virtual Machines

Unikernels Are Only Half The Answer To
Small, Fast, Secure Containers

The Other Half Are Lighter Weight
Virtual Machines

I don’t want to spend a lot of time on virtual machines. I assume
most of you are familiar with them, at least to the degree we
need in order to discuss super containers.
● Virtual Machine Monitor (VMM) Or “Hypervisor” Typically Sits

Between The Real Hardware And Multiple Operating
Systems

● Gives Each Operating System Instance The Illusion Of
Running On Its Own Hardware – A “Virtual Machine”

● Strong Physical Isolation Between Operating Systems

Virtual Machines

● Virtual Machine Monitor
(VMM) Or “Hypervisor”
Typically Sits Between The
Real Hardware And Multiple
Operating Systems

● Gives Each Operating System Instance The Illusion Of
Running On Its Own Hardware – A “Virtual Machine”

● Strong Physical Isolation Between Operating Systems

● Virtual Machines Are The “Fuel” Of Cloud Computing
● Multiple “Virtual Machines”, Each With Its Own Operating

System
● Each Virtual Machine Isolated And Managed By The Virtual

Machine Monitor Or Hypervisor

Cloud Computing
● Virtual Machines Are The

“Fuel” Of Cloud Computing
● Multiple “Virtual Machines”,

Each With Its Own Operating
System

● Each Virtual Machine Isolated
And Managed By The Virtual
Machine Monitor Or
Hypervisor

● Size - Each VM Requires Its Own Operating System,
Userland Software, And A Certain Amount Of Dedicated
Memory, Making VMs BIG:
− VMware – Max Of 380 VMs Per Physical Host
− AWS Xen ~ 10 VMs Per Physical Core
− AWS Nitro – 6000 VMs On A 36 Core Processor

● Speed - Slow To Startup – Boot Times Measured In Seconds
And Minutes

Drawbacks to Current Virtual Machines

● Size - Each VM Requires Its Own Operating System,
Userland Software, And A Certain Amount Of
Dedicated Memory, Making VMs BIG:

− VMware – Max Of 380 VMs Per Physical Host

− AWS Xen ~ 10 VMs Per Physical Core

− AWS Nitro – 6000 VMs On A 36 Core Processor

● Speed - Slow To Startup – Boot Times Measured In
Seconds And Minutes

● A Container Is A Package That Bundles Up An Application
And All Its Dependent Userland Software (Such As Libraries
And Services) Into A Single Image

● A Container Runs Like A Pseudo-Virtual Machine, Weakly
Isolated From The Host Processes And Other Containers

● All Containers On A Host Use The Host’s Kernel
● While There Are Several Different Container Formats,

Docker Is The Most Common

Notice in the diagram how there are two different versions of
Java running side-by-side! Dependency isolation is a major
feature of containers

Enter the “Container”
● A Container Is A Package That Bundles Up An

Application And All Its Dependent Userland
Software (Such As Libraries And Services)
Into A Single Image

● A Container Runs Like A Pseudo-Virtual
Machine, Weakly Isolated From The Host
Processes And Other Containers

● All Containers On A Host Use The Host’s
Kernel

● While There Are Several Different Container
Formats, Docker Is The Most Common

● Neatly Solves The Library Dependency And Versioning
Problem (“DLL Hell”) - This is a Windows term, but the
concept still applies to Linux and other operating systems
that support dynamic library loading

● Since The Kernel Is Already Running, Containers “Boot” In
Milliseconds

● Less Dedicated Memory Is Required For A Container Than A
Conventional VM

● “Orchestration” Software Has Been Developed To Deploy
And Manage Containers
− Kubernetes, Apache Mesos, Docker Swarm, et al

Advantages of Containers
● Neatly Solves The Library Dependency And Versioning Problem

(“DLL Hell”)

● Since The Kernel Is Already Running, Containers “Boot” In
Milliseconds

● Less Dedicated Memory Is Required For A Container Than A
Conventional VM

● “Orchestration” Software Has Been Developed To Deploy And
Manage Containers

− Kubernetes, Apache Mesos, Docker Swarm, et al

− Google, Netflix

● Applications Are Deployed As Complete Images, Ready To
Run, Instead Of Being Installed

● Containers Are Replaced, Rather Than Being “Patched”
● Containers Support The Concept Of “Microservices”,

Allowing Complex Applications To Be Built From Single-
function Services Wired Together Through Orchestration
Managers

● Multiple Containers Can Be Started And Stopped In
Response To Traffic Loads

Containers Have Changed The Way We
Develop and Deploy Software

● Applications Are Deployed As Complete Images, Ready To
Run, Instead Of Being Installed

● Containers Are Replaced, Rather Than Being “Patched”

● Containers Support The Concept Of “Microservices”,
Allowing Complex Applications To Be Built From Single-
function Services Wired Together Through Orchestration
Managers

● Multiple Containers Can Be Started And Stopped In
Response To Traffic Loads

● Limited Isolation Between Containers – Not A Security
Mechanism

● The Container Manager Must Run As Root Or Administrator
● Difficult To Strip Down Userland And Container Images

− Bloat Consumes Memory And Processing Resources
● Differences In Production And Development Environments -

Containers are generally “sold” on the fact that development
and production are supposed to be the identical
environments, but in reality, they never are. You have
development and debugging tools in the Development
Container that you (better!) remove from Production. Hence
the two environments are different. The difference may not
make a different (should not make a difference), but then
again an accidentally unsatisfied dependency may be
discovered in Production at 4AM

Drawbacks of Containers
● Limited Isolation Between Containers – Not A Security

Mechanism

● The Container Manager Must Run As Root Or
Administrator

● Difficult To Strip Down Userland And Container Images

− Bloat Consumes Memory And Processing
Resources

● Differences In Production And Development
Environments

● Significantly Reduced The Start-up Time Of A Virtual
Machine

● Reduced Performance-Robbing Overhead

This New Generation Of Hypervisors Are Called “LightVMs”

Meanwhile, Virtual Machine Technology
 Has Not Stood Still

Recent Optimizations To Both The Xen And The Linux
“Kernel-based Virtual Machine” (KVM) Hypervisors Have:

● Significantly Reduced The Start-up Time Of A Virtual
Machine

● Reduced Performance-Robbing Overhead

This New Generation Of Hypervisors Are Called “LightVMs”

● Combined With Unikernels, These LightVMs Can Launch
Microservices In As Little As 4 Milliseconds

● This Is Comparable To The Linux Kernel’s Exec/Fork Times
Of Approximately 1 Millisecond And Significantly Faster Than
A Docker-type Container’s Start-up Time Of 150 Milliseconds

Next Generation LightVMs - Speed

● Combined With Unikernels, These LightVMs Can
Launch Microservices In As Little As 4 Milliseconds

● This Is Comparable To The Linux Kernel’s Exec/Fork
Times Of Approximately 1 Millisecond And Significantly
Faster Than A Docker-type Container’s Start-up Time
Of 150 Milliseconds

● Additionally, The Reduced Footprint Of The Unikernel
Requires Only About 1/10th The Memory Of A Docker-type
Container Running On A Debian Kernel

● Since Memory Is Quite Often The Limiting Factor In Properly
Designed Microservices, This Means That 10 Times More
Unikernel/LightVM Microservice Instances Can Be Run On
The Same Physical Hardware.

Next Generation LightVMs - Size

● Additionally, The Reduced Footprint Of The Unikernel
Requires Only About 1/10th The Memory Of A Docker-
type Container Running On A Debian Kernel

● Since Memory Is Quite Often The Limiting Factor In
Properly Designed Microservices, This Means That 10
Times More Unikernel/LightVM Microservice Instances
Can Be Run On The Same Physical Hardware.

The top line are Docker Containers being launched, starting at
150 milliseconds, going to 1 full second at the 3000th container
launched. The line doesn’t extend beyond 3000 containers
because the physical machine ran out of memory (128GB) at that
point.
Now, notice the red line. Those are equivalent functionality
unikernels. They all launch at a fairly consistent 4 milliseconds.
Memory exhaustion now occurs at north of 8000 unikernel VMs
on the same hardware.
Remember the old “C10K challenge” - How many http sessions a
single web server could support? Well the new equivalent is
“VM100K” - running 100,000 VMs on the same physical host.
Think what that does to cloud computing economics. Amazon
going from 300 VMs per physical server to 100,000 VMs!

LightVM Unikernel vs Docker

LightVM Boot Times On A 64-Core Machine With 128GB Memory vs Docker Containers
Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, SimonKuenzer, Sumit Sati, Kenichi
Yasukata, Costin Raiciu, and FelipeHuici. 2017. My VM is Lighter (and Safer) than your Container.
InProceedings of SOSP ’17: ACM SIGOPS 26th Symposium on OperatingSystems Principles,
Shanghai, China, October 28, 2017 (SOSP ’17),16 pages.https://doi.org/10.1145/3132747.313276

● More Complete Function Libraries
● Mainstream Programming Languages

Practical Unikernels

Unikernels Have, Until Recently, Been The Province Of
Laboratories And Research Projects

This Has Changed As Unikernel Technology Has
Matured:

● More Complete Function Libraries
● Mainstream Programming Languages

One Approach – Reuse - AnyKernel
• NetBSD, A Version Of UNIX, Is Famous For Its Ability To Be

Ported To New Hardware

• It’s A Monolithic Kernel, But Has Been Internally Structured Into
Well Defined Functions And Layers

• A Library Of NetBSD Functions Has Been Created, Called “The
Anykernel” Concept

• The Anykernel Concept Allows Existing Application Code,
Designed For The Linux Or UNIX (POSIX) Operating Systems
To Be Statically Linked With Operating System Functions And
Drivers, Forming A Unikernel!

• NetBSD, A Version Of UNIX, Is Famous For Its Ability
To Be Ported To New Hardware

• It’s A Monolithic Kernel, But Has Been Internally
Structured Into Well Defined Functions And Layers

• A Library Of NetBSD Functions Has Been Created,
Called “The Anykernel” Concept

• The Anykernel Concept Allows Existing Application
Code, Designed For The Linux Or UNIX (POSIX)
Operating Systems To Be Statically Linked With
Operating System Functions And Drivers, Forming A
Unikernel!

32

Another Approach – Ground Up -
IncludeOS

• What Access Does A Modern Cloud Application Require?

− A Packet Interface For Network Communications

− A Block Interface For Some Storage

− A Serial Port To Output Console Data

• IncludeOS Team Wrote These Interfaces (And Other Necessary
POSIX Interfaces) From Scratch In C++

• Vast Majority Of Existing C And C++ Applications Will Link
Successfully With IncludeOS

• What Access Does A Modern Cloud Application
Require?
− A Packet Interface For Network Communications
− A Block Interface For Some Storage
− A Serial Port To Output Console Data

• IncludeOS Team Wrote These Interfaces (And Other
Necessary POSIX Interfaces) From Scratch In C++

• Vast Majority Of Existing C And C++ Applications Will
Link Successfully With IncludeOS

33

Practical Unikernels and Library Operating
Systems

• MirageOS (Written In OCaml)
• ClickOS (Runs Click NFV language)
• HaLVM (Written In Haskell)
• Ling (Written In Erlang)
• RumpKernel (NetBSD AnyKernel - Written In C/C++)
• IncludeOS (Written In C/C++)

With The Last Two, You Can Develop Unikernel
Applications In Python, Ruby, Node, Java, etc.

Practical Unikernels and Library Operating Systems
MirageOS
RumpKernel
ClickOS (runs Click NFV language)
HaLVM (Haskell)
HermitCore (C/C++/FORTRAN/Go)
IncludeOS (C/C++)
OSv (C/C++/Java/Ruby/JavaScript)
Runtime.js (JavaScript)

34

Containers vs Unikernels

So, this is what our microservices
computing stack looks like with
unikernels. We cut out a lot of
unnecessary, defect-ridden layers, and
merge other layers. We have a single
executable, with no dependencies,
ready to run on physical hardware, or
under any hypervisor

35

For IoT, It’s Even Simpler

Hardwar
e

Application
+

Library OS
+

Dedicated Hardware
Drivers

The situation is even better for IoT
applications. Especially since we know
exactly what hardware we are running
on!

36

The good news is that managing our paradigm-shifting unikernels
does not require any further paradigm shift ;-)
We can manage unikernels using the same tools as containers;
Kubernetes, Mesos, Swarm, etc., using adapters
These adapters include:
Kubevirt
Virtlet
and RancherVM
CoreOS rkt can natively manage virtual machines, as well as
containers

VM Unikernel Applications Can Be
Managed With The Same Tools As

Containers

● CoreOS ‘rkt’ Can Run Unikernel VMs With Docker
Swarm, Kubernetes, Or Apache Mesos Management
Engines

● Kubernetes:
○ Kubevirt
○ Virtlet
○ RancherVM

Drawbacks
Every Rose Has Its Thorn

• Unikernels in LightVMs Is A New Paradigm
• Lack Of Experience

• Limited Selection Of Libraries And Build Tools
• Existing Applications May Require Modification
• May Be More Difficult To Develop And Debug

Drawbacks?
Hardware or hypervisor specific drivers
Existing applications may not run correctly in a shared memory model

38

Further Resources
● Worried about IoT DDoS? Think Unikernels, Levine, Idit, 4/14/2017 (https://github.com/solo-io/unik/wiki/Worried-about-IoT-DDoS%3F-Think-

Unikernels)

● Enterprise IoT Security and Scalability: How Unikernels can Improve the Status Quo, Duncan, Bob; Happe, Andreas; Bratterud, Alfred; IEEE Xplore,
3/20/2107 (https://ieeexplore.ieee.org/document/7881647)

● Unikernels + connected devices, Ryd, Thomas, 9/8/2016 (https://mender.io/blog/unikernels-connected-devices)

● UniK: Build and Run Unikernels with Ease, Levine, Idit 10/26/2016 (https://github.com/solo-io/unik/wiki/UniK:-Build-and-Run-Unikernels-with-Ease)

● What is a unikernel, and why does it matter?, Hewitt Packard Enterprise, 10/2/2017 (https://www.hpe.com/us/en/insights/articles/what-is-a-
unikernel-and-why-does-it-matter-1710.html)

● Debunking Unikernel Criticisms, Oliver, Kiran; Jackson, Joab, 10/21/2016 (https://thenewstack.io/utilizing-unikernels-within-internet-things/)

● Making operating systems safer and faster with ‘unikernels’, University of Cambridge, 1/28/2016 (https://www.cam.ac.uk/research/news/making-
operating-systems-safer-and-faster-with-unikernels)

● A unikernel experiment: A VM for every URL, Skjegstad, Magnus, 3/25/2015 (http://www.skjegstad.com/blog/2015/03/25/mirageos-vm-per-url-
experiment/)

● Unikernel, Wikipedia, 1/5/2018 (https://en.wikipedia.org/wiki/Unikernel)

● My VM is lighter (and safer) than your container, Manco et al., SOSP’17 (http://cnp.neclab.eu/projects/lightvm/lightvm.pdf)

● Unikernel Monitors: Extending Minimalism Outside of the Box , Williams, Koller, 6/20/2016
(https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_williams.pdf)

● UniK: Build and Run Unikernels with Ease, Levine, Idit, 10/26/2016 (https://github.com/solo-io/unik/wiki/UniK:-Build-and-Run-Unikernels-with-Ease)

● Un_GoBack_GoBackiKraft – The Xen Project (https://xenproject.org/developers/teams/unikraft/)

Resources

39

https://github.com/solo-io/unik/wiki/Worried-about-IoT-DDoS%3F-Think-Unikernels
http://ieeexplore.ieee.org/document/7881647/
https://mender.io/blog/unikernels-connected-devices
https://github.com/solo-io/unik/wiki/UniK:-Build-and-Run-Unikernels-with-Ease
https://www.hpe.com/us/en/insights/articles/what-is-a-unikernel-and-why-does-it-matter-1710.html
https://thenewstack.io/utilizing-unikernels-within-internet-things/
http://www.cam.ac.uk/research/news/making-operating-systems-safer-and-faster-with-unikernels
http://www.skjegstad.com/blog/2015/03/25/mirageos-vm-per-url-experiment/
https://en.wikipedia.org/wiki/Unikernel
http://cnp.neclab.eu/projects/lightvm/lightvm.pdf
https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_williams.pdf
https://github.com/solo-io/unik/wiki/UniK:-Build-and-Run-Unikernels-with-Ease
https://www.xenproject.org/developers/teams/unikraft.html

Copies of the Slides and the Demo Virtual Machine
May Be Downloaded From

The
Formularity Website

https://formularity.com

OK, at this point, hopefully I’ve demonstrated the security, performance, and
resource savings of unikernels. Given the security problems of current full
operating systems, I truly believe that unikernels are the single most effective
base for acceptable business (microservice) and IoT device security. Thank
you! Copies of these slides and my talking notes will be available on the
Formularity website later today, as well as through the ITPC 2019 website. Are
there any questions?...

40

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

